2,730 research outputs found

    A Platform for Proactive, Risk-Based Slope Asset Management, Phase II

    Get PDF
    INE/AUTC 15.0

    New Farmer Jump Start Project

    Get PDF
    Southwest Iowa development groups looked at several ways to entice new farmers to commit to local food production

    Thermoresponsive and Mechanical Properties of Poly(

    Get PDF
    Gelation of the left helical N-substituted homopolypeptide poly(l-proline) (PLP) in water was explored, employing rheological and small-angle scattering studies at different temperatures and concentrations in order to investigate the network structure and its mechanical properties. Stiff gels were obtained at 10 wt % or higher at 5 °C, the first time gelation has been observed for homopolypeptides. The secondary structure and helical rigidity of PLP has large structural similarities to gelatin but as gels the two materials show contrasting trends with temperature. With increasing temperature in D₂O, the network stiffens, with broad scattering features of similar correlation length for all concentrations and molar masses of PLP. A thermoresponsive transition was also achieved between 5 and 35 °C, with moduli at 35 °C higher than gelatin at 5 °C. The brittle gels could tolerate strains of 1% before yielding with a frequency-independent modulus over the observed range, similar to natural proline-rich proteins, suggesting the potential for thermoresponsive or biomaterial-based applications.United States. Army Research Office (W911NF-13-D-0001)United States. National Institutes of Health (NIH/NIGMS 5T32GM008334

    Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds

    Get PDF
    Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff, biocontinuous, nanostructured networks, but these gels are limited in applications by their relatively brittle nature. Here, a gel-forming ELP is chain-extended by telechelic oxidative coupling, forming extensible, tough hydrogels. Small angle scattering indicates that the chain-extended polypeptides form a fractal network of nanoscale aggregates over a broad concentration range, accessing moduli ranging from 5 kPa to over 1 MPa over a concentration range of 5–30 wt %. These networks exhibited excellent erosion resistance and allowed for the diffusion and release of encapsulated particles consistent with a bicontinuous, porous structure with a broad distribution of pore sizes. Biofunctionalized, toughened networks were found to maintain the viability of human mesenchymal stem cells (hMSCs) in 2D, demonstrating signs of osteogenesis even in cell media without osteogenic molecules. Furthermore, chondrocytes could be readily mixed into these gels via thermoresponsive assembly and remained viable in extended culture. These studies demonstrate the ability to engineer ELP-based arrested physical networks on the molecular level to form reinforced, cytocompatible hydrogel matrices, supporting the promise of these new materials as candidates for the engineering and regeneration of stiff tissues

    Unmanned Aircraft System Assessments of Landslide Safety for Transportation Corridors

    Get PDF
    An assessment of unmanned aircraft systems (UAS) concluded that current, off-the-shelf UAS aircraft and cameras can be effective for creating the digital surface models used to evaluate rock-slope stability and landslide risk along transportation corridors. The imagery collected with UAS can be processed using a photogrammetry technique called Structure-from-Motion (SfM) which generates a point cloud and surface model, similar to terrestrial laser scanning (TLS). We treated the TLS data as our control, or “truth,” because it is a mature and well-proven technology. The comparisons of the TLS surfaces and the SFM surfaces were impressive – if not comparable is many cases. Thus, the SfM surface models would be suitable for deriving slope morphology to generate rockfall activity indices (RAI) for landslide assessment provided the slopes. This research also revealed that UAS are a safer alternative to the deployment and operation of TLS operating on a road shoulder because UAS can be launched and recovered from a remote location and capable of imaging without flying directly over the road. However both the UAS and TLS approaches still require traditional survey control and photo targets to accurately geo-reference their respective DSM.List of Figures ...................................................................................................... vi List of Abbreviations ......................................................................................... vii Acknowledgments ................................................................................................ x Executive Summary ............................................................................................. xi CHAPTER 1 INTRODUCTION .......................................................................... 1 CHAPTER 2 LITERATURE REVIEW ................................................................ 4 2.1 Landslide Hazards .................................................................................... 4 2.2 Unmanned Aircraft Systems Remote Sensing.......................................... 6 2.3 Structure From Motion (SfM) .................................................................. 7 2.4 Lidar terrain mapping ............................................................................... 8 CHAPTER 3 STUDY SITE/DATA .................................................................. 11 CHAPTER 4 METHODS ................................................................................ 13 4.1 Data Collection ............................................................................................. 13 4.1.1 Survey Control ..................................................................................... 14 4.1.2 TLS Surveys ........................................................................................ 16 4.1.3 UAS Imagery ....................................................................................... 17 4.1.4 Terrestrial Imagery Acquisition ........................................................... 19 4.2 Data Processing ............................................................................................ 20 4.2.1 Survey Control ..................................................................................... 20 4.2.2 TLS Processing .................................................................................... 20 4.2.3 SfM Processing .................................................................................... 21 4.2.4 Surface Generation .............................................................................. 22 4.3 Quality Evaluation ........................................................................................ 23 4.3.1 Completeness ....................................................................................... 23 4.3.2 Data Density/Resolution ...................................................................... 23 4.3.3 Accuracy Assessment .......................................................................... 23 4.3.2 Surface Morphology Analysis ............................................................. 24 4.2.6 Data Visualization ............................................................................... 25 CHAPTER 5 RESULTS ................................................................................. 27 v 5.1 UTIC DSM evaluation.................................................................................. 27 5.1.1 Completeness evaluation ..................................................................... 28 5.1.2 Data Density Evaluation ...................................................................... 29 5.1.3 Accuracy Evaluation............................................................................ 30 5.2 Geomorphological Evaluation ...................................................................... 32 CHAPTER 6 DISCUSSION ............................................................................ 35 6.1 Evaluation of UAS efficiencies .................................................................... 35 6.2 DSM quality and completeness .................................................................... 37 6.3 Safety and operational considerations .......................................................... 37 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ................................ 40 7.1 Technology Transfer..................................................................................... 41 7.1.1 Publications ......................................................................................... 41 7.1.2 Presentations ........................................................................................ 42 7.1.3 Multi-media outreach .......................................................................... 43 6.4 Integration of UAS and TLS data ................................................................. 44 REFERENCES .............................................................................................. 4

    Structure of Frequency-Interacting RNA Helicase from \u3ci\u3eNeurospora crassa\u3c/i\u3e Reveals High Flexibility in a Domain Critical for Circadian Rhythm and RNA Surveillance

    Get PDF
    The FRH (frequency-interacting RNA helicase) protein is the Neurospora crassa homolog of yeast Mtr4, an essential RNA helicase that plays a central role in RNA metabolism as an activator of the nuclear RNA exosome. FRH is also a required component of the circadian clock, mediating protein interactions that result in the rhythmic repression of gene expression. Here we show that FRH unwinds RNA substrates in vitro with a kinetic profile similar to Mtr4, indicating that while FRH has acquired additional functionality, its core helicase function remains intact. In contrast with the earlier FRH structures, a new crystal form of FRH results in an ATP binding site that is undisturbed by crystal contacts and adopts a conformation consistent with nucleotide binding and hydrolysis. Strikingly, this new FRH structure adopts an arch domain conformation that is dramatically altered from previous structures. Comparison of the existing FRH structures reveals conserved hinge points that appear to facilitate arch motion. Regions in the arch have been previously shown to mediate a variety of protein-protein interactions critical for RNA surveillance and circadian clock functions. The conformational changes highlighted in the FRH structures provide a platform for investigating the relationship between arch dynamics and Mtr4/FRH function

    Teacher Questioning and Invitations to Participate in Advanced Mathematics Lectures

    Get PDF
    In this study, we were interested in exploring the extent to which advanced mathematics lecturers provide students opportunities to play a role in considering or generating course content. To do this, we examined the questioning practices of 11 lecturers who taught advanced mathematics courses at the university level. Because we are unaware of other studies examining advanced mathematics lecturers’ questioning, we first analyzed the data using an open coding scheme to categorize the types of content lecturers solicited and the opportunities they provided students to participate in generating course content. In a second round of analysis, we examined the extent to which lecturers provide students opportunities to generate mathematical contributions and to engage in reasoning researchers have identified as important in advanced mathematics. Our findings highlight that although lecturers asked many questions, lecturers did not provide substantial opportunities for students to participate in generating mathematical content and reasoning. Additionally, we provide several examples of lecturers providing students some opportunities to generate important contributions. We conclude by providing implications and areas for future research

    What we know about demand surge: Brief summary

    Get PDF
    Abstract: Demand surge is a process resulting in a higher cost to repair building damage after large disasters than to repair the same damage after a small disaster; this higher cost can be an additional 20% or more. It is of interest to insurers, regulators, property owners, and others. Despite its importance, demand surge has no standard definition or generally accepted predictive theory of its mechanisms and quantitative effects. By studying the circumstances of natural disasters that did and did not cause demand surge, common explanatory themes emerge from these historical events that may describe why and how much losses increase in some disasters. The themes are: total amount of repair work; timing of reconstruction; costs of materials, labor, and equipment; contractor overhead and profit; the general economic situation; insurance claims handling; and decisions of an insurance company. The development of these themes will aid in constructing a mechanistic, empirically supported approach to modeling demand surge
    • …
    corecore