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Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and
shear moduli of DC704 and 5-PPE measured by piezoceramic transducers

Tina Hecksher,1,a) Niels Boye Olsen,1 Keith A. Nelson,2 Jeppe C. Dyre,1

and Tage Christensen1

1DNRF Centre “Glass and time”, IMFUFA, Department of Sciences, Roskilde University, Postbox 260,
DK-4000 Roskilde, Denmark
2Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 12 November 2012; accepted 17 January 2013; published online 26 February 2013)

We present dynamic shear and bulk modulus measurements of supercooled tetraphenyl-tetramethyl-
trisiloxane (DC704) and 5-phenyl-4-ether over a range of temperatures close to their glass transition.
The data are analyzed and compared in terms of time-temperature superposition (TTS), the relaxation
time, and the spectral shape parameters. We conclude that TTS is obeyed to a good approximation for
both the bulk and shear moduli. The loss-peak shapes are nearly identical, while the shear modulus
relaxes faster than the bulk modulus. The temperature dependence of this decoupling of time scales is
constant over the temperature range explored here. In addition, we demonstrate how one can measure
reliably the DC shear viscosity over ten orders of magnitude by using the two measuring techniques
in combination. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789946]

I. INTRODUCTION

In contrast to solids, liquids cannot be clamped, bent,
squeezed, pulled, or twisted. For this simple reason mechan-
ical spectroscopy of liquids (viscous as well as non-viscous)
presents a formidable challenge. Even highly viscous liquids
close to the glass transition, which appear very solid-like,
eventually flow on the time scale of the experiment, since
we are usually interested in both the solid-like and the flow
characteristics of the liquid. In one respect, though, liquids
are simpler than crystalline solids: they are isotropic and thus
under fixed thermal boundary conditions (isothermal or adi-
abatic) the number of independent elastic moduli reduces
to two. This could be a combination of any two quantities
like Young’s modulus, Poisson’s ratio, the shear modulus,
the longitudinal modulus, or the bulk modulus. We choose
here to regard as the two fundamental quantities the adiabatic
bulk modulus (the pressure response to an adiabatic, shape-
preserving deformation) and the shear modulus (the stress re-
sponse to a volume-preserving deformation). Studies of such
pairs of moduli are virtually nonexistent when the focus is on
their frequency dependencies for highly viscous liquids.

In this first paper of a series on mechanical spectroscopy
of glass-forming liquids, we present results from shear and
(adiabatic) bulk modulus measurements carried out in the
same experimental setup, i.e., the same cryostat and electron-
ics, using methods first described in Refs. 1 and 2. The fo-
cus is on comparing the two mechanical response functions
with respect to time scales, temperature dependencies, and
spectral shapes. Also, we discuss how to determine as accu-
rately as possible the absolute levels of the respective moduli,
which is crucial when comparing to the other techniques as in
Paper II.3

a)Electronic mail: tihe@ruc.dk.

The background for comparing bulk and shear re-
laxations in viscous liquids is the following. Christensen
and Olsen4 compared the bulk and shear moduli of 1,2,6-
hexanetriol. They concluded that the bulk relaxation was
slower than the shear relaxation, while the spectral shapes
were identical within the noise. Meng and Simon5 presented
pressure-relaxation measurements and compared the bulk re-
sults to shear creep compliance curves (measured by others)
in polystyrene. They found that the bulk relaxation occurs in
the short-time region of the shear response, contrary to the
conclusion of Christensen and Olsen.4 However, there may
well be a difference between polymers and molecular liquids
in this respect. Bulk and shear relaxations have been com-
pared by several authors using (ultrasonic) measurements of
longitudinal and shear sound waves.6–10 Based on this proce-
dure Marvin et al.6 reported bulk and shear relaxation times
as well as activation energies to be roughly equal. Morita
et al.7 found that the bulk relaxation was five times slower
than shear relaxation, and Dexter and Matheson8 reported a
similar observation. Alig and co-workers9–11 derived theoret-
ically a relation between the bulk and shear viscosities (as
defined below in Eqs. (3) and (6)) of polymers, ηK/ηG = 2/3,
but found that the experiment ratio is larger than 2/3. Yee and
Takemori12 developed a method by which Young’s modulus
and Poisson’s ratio could be measured simultaneously on a
sample. Combining the measured quantities they were able
to calculate the bulk and shear moduli, and their results sug-
gested that the time scale for relaxation is very similar. Of
these studies only some compared response functions mea-
sured in the same experimental setups (Refs. 1, 7, and 12).

This paper is structured as follows: In Sec. II, we
give some experimental details of the measurements, while
more technical details are given in Appendices A and B.
Sections III A and III B present the data and characterize these
in terms of time-temperature superposition (TTS), time scales
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of the alpha relaxation, and spectral shapes. This is followed
by Sec. IV in which the consistency between data for the DC
shear viscosity obtained in two independent ways from the
two measuring techniques is established. The conclusions are
summarized briefly in Sec. V.

II. EXPERIMENTAL DETAILS

Measurements were performed on two commercial
diffusion-pump oils: tetramethyl-tetraphenyl-trisiloxane
(DC704) and 5-phenyl-4-ether (5-PPE). Both stem from
old bottles (>10 years) but have proven to be extremely
stable and give reproducible results over the entire lifetime
of the bottle. These liquids were chosen because they have
a number of convenient properties: they are not prone to
crystallize which is important as crystallization may break
our measuring cells, their Tg’s are in the working range of
our cryostats, they are easy to handle at room temperature,
and they are chemically stable and non-toxic. The liquids
were used as purchased from Sigma-Aldrich and Santovac
Inc., respectively, and used with no further purification. The
glass transition temperature, Tg, of DC704 is 210 K and Tg of
5-PPE is 245 K. Both liquids are rather fragile with Angell
fragility index of m � 80.

The general experimental setup and the cryostat have
been described in details by Igarashi et al.13, 14 All measure-
ments were carried out in the same closed-cycle cryostat. This
procedure ensures that all measurements are performed under
close-to-identical experimental conditions. The temperature
stability of the cryostat is better than 10 mK, and the abso-
lute temperature calibration is better than 0.1 K.

The Piezo-electric Bulk modulus Gauge (PBG) and the
Piezo-electric Shear modulus Gauge (PSG) techniques were
developed some time ago,1, 2 but are still undergoing improve-
ments. Both techniques rely on the piezo-electric effect, i.e.,
the coupling between the electric field and the strain state
of the piezo-electric material, and both methods have a large
dynamical range spanning from approximately 1 mHz to 10
kHz. The upper limit is set by the first resonance, which for
both transducers lies around 100 kHz.

Below we give a brief description of the working princi-
ples of these devices. Appendix A gives a more detailed de-
scription of the PSG, while Appendix B gives some specific
details on the PBG technique. For full descriptions we refer
to Christensen and Olsen1, 2 and Hecksher.15

The PSG2 is a layered construction of three piezo-electric
ceramic discs (see Fig. 1). When subjected to an electrical
field the discs expand or contract in the radial direction. The
three discs are electrically connected such that the middle disc
moves opposite the two outer discs. The liquid is loaded in the
two gaps between the discs. Consequently, an electric field re-
sults in a shear deformation of the liquid layers. A “stiff” (vis-
cous) liquid partially clamps the discs, causing a drop in the
measured capacitance compared to that of the empty device.
This capacitance drop is mathematically related to the shear
modulus of the liquid.2

The PBG1 consists of a piezo-electric ceramic shell with
electrodes on the inside and the outside (Fig. 1). The ceramic
is polarized in the radial direction. Consequently, when a volt-

PSG PBG
liquid
reservior

liquid

piezo electric ceramics

19mm 18mm

0.5mm
0.5mm

electrodes

0.5mm

(schematic drawing, not to scale)

FIG. 1. Schematic drawings of the Piezo-electric Shear modulus Gauge
(PSG) and the Piezo-electric Bulk modulus Gauge (PBG). The blue wavy
lines represent the liquid. The PSG consists of three piezo-electric discs in a
layered construction, all polarized in the z-direction (the polarization direc-
tion is marked by a small dot). The discs are electrically connected as shown,
which results in the field direction in the middle disc always being opposite
the two outer discs. Consequently, the middle disc moves opposite the outer
discs, creating a shear deformation of the two liquid layers between the discs.
The PBG consists of a piezo-electric shell with electrodes inside and out-
side. When an electrical field is applied, the shell deforms, creating a larger
or smaller inner volume, thus enforcing a volume deformation on the liquid
inside the shell. The device is filled through a small hole in the ceramic shell.
To allow for thermal contraction of the liquid, a reservoir is attached over this
hole, thus ensuring that the liquid is filling the full volume of the shell at all
temperatures. For more details, see Refs. 1 and 2.

age is applied to the electrodes, the ceramic deforms in the
radial direction, increasing or decreasing the inner volume of
the shell depending on the direction of the field. A liquid in-
side the shell partially clamps the shell and thus changes the
capacitance of the shell compared to that of a freely mov-
ing shell. The difference in capacitance of the shell between
empty and liquid-filled shells is mathematically related to the
bulk modulus of the liquid.1 In the available frequency region,
the PBG measures the adiabatic rather than the isothermal
bulk modulus. This is the case whenever the heat diffusion
length lD = |√D/iω| is much smaller than the radius of the
ceramic sphere, R = 9 mm. Here, D is the diffusion constant
and ω the angular frequency. In our frequency range we have
2.8 mm < lD < 0.001 mm. Thus, the isothermal limit is ap-
proached at the lowest frequencies, but here even the adiabatic
criterion lD � R applies to a good approximation.

The liquid is loaded through a small hole in the shell.
This hole must be kept open because the liquid contracts upon
cooling and the PBG needs to draw in extra liquid in order to
fill the volume. The existence of the hole limits the tempera-
ture (or rather the relaxation time) range of the measurement.
The time it takes for the liquid to flow in through the hole
is proportional to the shear viscosity, and this time gets very
large when the glass transition temperature is approached.
As demonstrated below, the hole allows for an independent
measurement of the DC shear viscosity compared to that de-
rived directly from a dynamic shear modulus measurement,
because the hole flow may be modelled as a Poiseuille flow.

A complication of these methods is that the properties
of piezo-electric ceramic material are both temperature de-
pendent and dependent on thermal history. The bulk/shear
modulus is extracted from the measurement of difference in
the capacitance of the empty device and of the filled device;
this means that for each measurement the temperature pro-
tocol needs to be repeated with the empty device in order to
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FIG. 2. Bulk modulus data of DC704 and 5-PPE. (a) Real and imaginary
parts of the bulk modulus for DC704 from 214 K in steps of 2 K up to 232
K. (b) Real and imaginary parts of the bulk modulus for 5-PPE from 250 K
in steps of 2.5 K up to 275 K.

ensure identical thermal histories. We refer to these as the liq-
uid measurement and the reference measurement.35

III. DATA AND THEIR CHARACTERIZATION

Figure 2 shows the real and imaginary parts of the com-
plex bulk moduli of DC704 and 5-PPE, while the complex
shear moduli are shown in Fig. 3. The characteristic viscoelas-
tic behavior of supercooled liquids is evident: At low frequen-
cies (corresponding to long times) the behavior is liquid-like;
for the shear modulus this means that the real part vanishes
as frequency goes to zero, while the bulk modulus at low fre-
quencies converges to constant finite (low) value, K0. At high
frequencies the behavior is solid-like, which for both bulk and
shear moduli implies a (higher) plateau value of the real part.
For both DC704 and 5-PPE, the high-frequency level of the
bulk modulus (K∞) is roughly five times higher than the high-
frequency level of the shear modulus (G∞).

In between these limits there is a transition from liquid-
to solid-like behavior. This gives peaks in the imaginary parts
of the moduli that identify the characteristic frequency (time
scale) of the liquid. This characteristic time scale is strongly
temperature dependent close to the glass transition, as is evi-
dent from Figs. 2 and 3 where this transition shifts six orders
of magnitude over a 20 K temperature interval.

The bulk modulus data of DC704 cover temperatures
from 214 K to 232 K in steps of 2 K, the corresponding shear

FIG. 3. Shear modulus data of DC704 and 5-PPE. (a) Real and imaginary
parts of the shear modulus of DC704 from 210 K in steps of 2 K up to 228
K. (b) Real and imaginary parts of the shear modulus of 5-PPE from 242.5 K
in steps of 2.5 K up to 260 K, and at 265 K and 270 K.

modulus data go down to 210 K. The temperature interval for
the bulk modulus of 5-PPE is from 250 K to 275 K in steps
of 2.5 K, and for the shear modulus from 242.5 K to 260 K
(same step size) as well as 265 K and 270 K. The temperature
range of the bulk modulus measurement is limited due to the
slow flow in and out of the reservoir as described in Sec. II.

Bulk modulus data of these liquids have not been pub-
lished before, while the shear modulus was measured previ-
ously by Jakobsen et al.16 The agreement between their set of
measurements and the present is excellent with respect to re-
laxation shapes and relaxation times, although there are up
to 40% deviations on the absolute levels of G∞. This dis-
crepancy can be due to imperfect filling of the PSG or im-
perfect match of liquid and reference measurement. We be-
lieve that the present measurements have relatively small error
bars on absolute levels because of the excellent agreement be-
tween the shear viscosity measured by the PSG and PBG (see
Sec. IV below).

A. Time-temperature superposition

Time-temperature superposition refers to the property
that the shape of a given relaxation function is unchanged
when the temperature is varied and only the position on the
logarithmic time/frequency axis shifts. In mechanical mea-
surements, TTS is often assumed in order to construct a
master curve spanning more decades of frequency than the
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time/frequency window of the actual measurement. Based on
dielectric measurements, which usually have quite a large fre-
quency span, it has been suggested that TTS applies for the
main (alpha) relaxation whenever it is not influenced by other
processes.17 Wang and Richert18 observed a progressive nar-
rowing of the relaxation at temperatures much above the glass
transition, while Nielsen et al.19 reported both broadening and
narrowing of the dielectric relaxation with temperature close
to the glass transition in a comparative study of a large num-
ber of liquids. With the relatively large frequency span of our
techniques, we can test whether TTS applies.

A standard way of checking for TTS in frequency-
domain data is to make a dimensionless plot of the imaginary
part of the response function (the “loss”), i.e., scaling the fre-
quency axis with the peak position and the y-axis by the peak
height (ω/ωmax, χ

′′/χ ′′
max), where χ represents the complex

response function. If this scaling makes the data collapse, TTS
is obeyed. Normally this is a qualitative statement. A quan-
titative TTS measure was recently proposed and applied to
dielectric data by Nielsen et al.,19 a method that requires ex-
tremely low-noise data and unfortunately cannot be used to
characterize our mechanical data.

Another, less commonly used, way of checking for TTS
is via a normalized Cole-Cole (Nyquist) plot. A Cole-Cole
plot is constructed by plotting the complex response function
as (χ ′(ω), χ ′′(ω)) parametrized via the (angular) frequency ω.
Defining the normalized relaxation function, F(ω) = (χ (ω) −
χ0)/(χ∞ − χ0), the normalized Cole-Cole plot is defined by
(F′(ω), F′′(ω)). The advantage of using a normalized Cole-
Cole plot is that it includes both the real and imaginary parts
and thus is a more complete representation of the data than
merely plotting the imaginary part as a function of frequency.
Also, in Cole-Cole plots the entire data set from ω → 0 to
ω → ∞ is contained in a single plot. In this representation
a Debye process traces out a semi-circle with radius 1/2 and
center on the real axis. The typical alpha process, on the other
hand, is more flat and skewed to the high-frequency side.

In Fig. 4, we show both types of TTS plots for the shear
and bulk relaxations of DC704 and 5-PPE. Within the noise,
TTS is obeyed for the bulk modulus of both DC704 and 5-
PPE. In the less noisy shear modulus data, it is seen that while
the DC704 shows near perfect data collapse, the 5-PPE data
have small deviations on the high-frequency side of the al-
pha relaxation peak. There is a temperature-dependent high-
frequency wing in the spectrum, which could be due to a
small-amplitude beta process according to the conjecture of
Olsen et al.17

Both bulk and shear relaxation shapes for DC704 and 5-
PPE are quite similar. In the shear data we do see a small
difference between the two substances: 5-PPE is a bit nar-
rower than the DC704, which in the Cole-Cole representation
corresponds to a slightly higher peak position. In Fig. 5, we
combine the TTS curves of bulk and shear modulus relaxation
(bulk data in (black) empty circles and shear data in (cyan)
dots). For DC704 the less noisy shear-modulus data trace out
a curve that the bulk modulus data are scattered around. For
the 5-PPE data there are slight deviations from this picture.
In the loss peak, TTS scaling the bulk modulus peak is a lit-
tle broader than the shear modulus peak. This shows up as

FIG. 4. TTS plots of the bulk and shear modulus. (a) Bulk modulus of
DC704, (b) shear modulus of DC704, (c) bulk modulus of 5-PPE, and (d)
shear modulus of 5-PPE. The bulk modulus data are more noisy than the
shear data, but within the noise TTS is obeyed for the bulk modulus of both
DC704 and 5-PPE. With less noise in the shear modulus spectra, an indication
of a small wing is seen in 5-PPE. Thus, 5-PPE does not obey TTS perfectly
although the deviation is very small, while TTS is nearly perfectly obeyed in
the shear data for DC704.

a slighter flatter shape in the Cole-Cole representation. This
may be an artifact stemming from an imperfect match be-
tween liquid and reference scan. The odd shape on the low-
frequency side of the peak (the curve goes below zero instead
of flattening out) supports this. Similarity between the bulk
and shear relaxations was noted previously by Morita et al.7

(in a polymer) and by Christensen and Olsen1 (for the alcohol
1,2,6-hexanetriol).

A low frequency cutoff of the bulk modulus data pre-
sented in Fig. 2(a) was introduced to get rid of the signal due
to liquid flowing in and out of the piezo-ceramic shell at low
frequencies, since this feature is unrelated to the bulk mod-
ulus relaxation. This phenomenon is known in the literature
as an over-damped Helmholtz resonator, and as mentioned in
Sec. II the position of this mode is determined by the shear
viscosity. Including this feature in the TTS plot thus il-
luminates the relation between shear and bulk viscosities.
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FIG. 5. Same plots as in Fig. 4, but now with the bulk and shear data plotted
together for (a) DC704 and (b) 5-PPE. The bulk data are given in black sym-
bols, the shear data in blue symbols. It appears that the shape of the bulk and
shear relaxation is the same, most convincingly for DC704.

Consequently, we scaled the bulk modulus curves to the peak
position of the Helmholtz mode (Figure 6). In order to do so,
the peak must be in the frequency window of the measure-
ment, which limits the range of temperatures that can be in-
cluded in the analysis to the higher temperatures.

FIG. 6. Full signal from the bulk modulus measurement including the
Helmholtz mode (see text) of the liquid flowing in and out of the reservoir
for (a) DC704 and (b) 5-PPE. The left panels show the imaginary parts of
the signals as functions of frequency at different temperatures. The right pan-
els show the same spectra scaled to the position of the Helmholtz mode. For
DC704, TTS is clearly obeyed over the entire region, while 5-PPE shows
small deviations from this at the lowest temperatures. The orange dashed line
is a pure Debye curve, confirming the exponential nature of the Helmholtz
mode (see Appendix C).

Figure 6 shows the imaginary part of the bulk modu-
lus as a function of frequency, also including the Helmholtz
mode of the liquid flowing in and out of the hole, as well as
these curves scaled with the peak position of the Helmholtz
mode. Being exponential in nature, the Helmholtz mode ob-
viously scales, but perhaps more surprising is the fact that
this procedure simultaneously scales the bulk modulus: The
entire signal collapses into a single curve. For DC704, the
collapse is close to perfect; both the minimum between the
two peaks and the height and position of the bulk modulus re-
laxation collapse. For 5-PPE, the minimum decreases slightly
and the maximum of the bulk modulus relaxation increases
with decreasing temperature, slightly destroying the data col-
lapse. The peak position of the bulk relaxation relative to the
Helmholtz mode; however, seems to be unchanged.

Time-temperature superposition for the entire curve sug-
gests that the bulk and shear viscosities are proportional in the
temperature range included here. We next look into the ques-
tion of the relation between the bulk and shear relaxation time
scales.

B. Loss-peak frequencies and shape parameters

For a given response, the relaxation time τ may be de-
fined in different ways. It may be defined as the fitting pa-
rameter τ of various fitting functions such as the stretched ex-
ponential (KWW) function ϕ = ϕ0 exp (−(t/τ )β) in the time-
domain or the Havrilak-Negami function χ = χ∞ + �χ /(1
+ (iωτ )β)α in the frequency domain. Alternatively, τ may be
identified from model-free definitions, for instance, the inte-
gral τ = ∫ ∞

0 ϕ(t)/ϕ0 dt or the inverse of the angular loss-peak
frequency. For exponential relaxations, all these definitions
give the same τ ’s. For non-exponential relaxations the τ ’s are
proportional (as functions of temperature) if TTS is obeyed.

Probably the most robust and convenient model-free
method to determine the time scale of a relaxation process
is determining the loss-peak frequency, fmax, and for all mea-
surements presented here this is indeed possible. The peak
position is determined by fitting a second-order polynomial
to a number of points around maximum of the loss.19 The
number of data points we included in the fit depended on the
noise. For the shear modulus relaxation, a total of five points
were sufficient. For the lowest temperature of the bulk modu-
lus data we included up to 15 points. The results are shown in
Fig. 7(a) where the full symbols give the 5-PPE data and the
open symbols the DC704 data. In both cases the shear modu-
lus relaxes faster than the bulk modulus. This agrees with the
conclusion of Christensen and Olsen1 and Morita et al.7

Time scales of different probes are sometimes16, 20–22

compared through the so-called time-scale index X defined
by

X(χ1, χ2, T ) = τχ1 (T )

τχ2 (T )
. (1)

Here the χ ’s are two different probes, τχ ’s are the time scale
of that particular probe, and T is the temperature. If X is con-
stant we define the time scales of the two probes to be cou-
pled. Figure 7(b) shows the logarithm of the time scale index
of the bulk and shear relaxations. The shear modulus relaxes
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FIG. 7. (a) Loss-peak frequencies for the bulk and shear relaxations. (Symbols) Bulk modulus (triangles), shear modulus (triangles), loss-peak frequencies of
DC704 (open symbols), and 5-PPE (full symbols). (b) Time-scale index (see Eq. (1)) for the bulk and shear relaxations. The shear modulus relaxes roughly 0.4
decades (equivalent to 2.5 times) faster than the bulk modulus in both DC704 and 5-PPE.

roughly 0.4 decades (2.5 times) faster than the bulk modulus
at all temperatures, and the bulk and shear relaxation times
are clearly coupled.

There is no clear trend in previous works regarding
the temperature dependence of X, which apparently de-
pends both on the liquid under investigation and the probes
used. There are reports of constant time-scale indices in
measurements,23–26 as well as reports of a temperature-
dependent time scale indices.27–29 Sometimes the relaxation
times (or peak frequencies) of different probes are simply
compared in an Arrhenius plot (log τ or log ωmax as a func-
tion of inverse temperature) of different probes without ex-
plicitly evaluating the time scale index, see, e.g., Schröter
and Donth,30 who collected data on glycerol from dielectric,
heat capacity, shear retardation, and nuclear magnetic reso-
nance measurements. However, none of these studies compare
quantities measured under identical experimental conditions,
which is critical when comparing, e.g., relaxation times which
are extremely temperature dependent. Even small deviations
(<1%) in the temperature calibration can give rise to spurious
decoupling.

We prefer to characterize the shape of the relaxation func-
tion in terms of the model-independent parameters: minimum
slope17 and normalized half width.31 The minimum slope is
defined as the minimum of the logarithmic derivative of the
high-frequency part of spectrum

αmin = min
f >fmax

(
d log χ ′′

d log f

)
, (2)

which is a negative number giving the high-frequency ap-
proximate power-law decay. Since the low-frequency side
of the loss peaks of viscous liquids is usually Debye like,
αmin is a measure of the stretching of the relaxation func-
tion. This is similar to the well-known model parameters βSE

and βCD of the stretched exponential function and the Cole-
Davidson fitting functions, respectively. Determining the min-
imum slope involves taking the numerical derivative of the
data, and this only works well for low-noise measurements.
For most dielectric data this is an excellent method to char-
acterize the spectral shapes of relaxation as documented by
Nielsen et al.19 For shear relaxation data it works reasonably
well, while the bulk modulus data are too noisy for this pro-
cedure. Alternatively, one may use the quantity W defined as

the width of the loss spectrum at half maximum. It is straight-
forward to determine W , and we have been able to do so even
for the bulk spectra.

We show the shear relaxation minimum slopes of DC704
and 5-PPE as functions of loss-peak frequencies in Fig. 8(a)
compared to the values obtained in 2005 by Jakobsen et al.16

for the same substances (in smaller symbols). There is a good
agreement between the data sets.

Figure 8(b) reports the widths normalized to the width
of a Debye process, W/WD , for both bulk and shear data.
The scatter is quite large for the bulk relaxation values, which
reflects the relatively large noise in the measurement itself.
Within the scatter, bulk and shear measurements agree, which
is also what is expected based on the TTS analysis pre-
sented in Fig. 5. The width of the DC704 shear relaxation de-
creases slightly from −0.42 to −0.46 with decreasing temper-
ature, while the 5-PPE values decrease from roughly −0.40
to −0.55. This again confirms that TTS is well obeyed in
DC704, whereas there are minor deviations from TTS in 5-
PPE.

Both width and minimum slope for DC704 agree very
well with previous results, while we observe a discrepancy
between widths of the shear relaxation in the present mea-
surements and the values reported in Ref. 16 for 5-PPE.
The latter are shifted towards lower values (narrower spectral
shape), but the loss-peak frequency dependence (or, equiva-
lently, the temperature dependence) is similar. Jakobsen and
Niss32 showed that imperfect filling of the shear transducer
can lead to a spurious broadening of the spectral shape, which
presumably explains the discrepancy.

IV. VISCOSITY DETERMINED THROUGH BULK
AND SHEAR MODULI

We can determine the DC shear viscosity from the mea-
surement of the shear modulus. Recall that the complex shear
viscosity is defined as33

ηG(ω) = G(ω)

iω
. (3)

This means that the DC shear viscosity is given by

ηDC
G = η′

G(ω → 0) = lim
ω→0

G′′(ω)

ω
. (4)
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FIG. 8. Spectral shape parameters for DC704 and 5-PPE. (a) The minimum slope (Eq. (2)) is a measure of how stretched the relaxation is. Large symbols
are from present measurements, small symbols give the parameters reported by Jakobsen et al.16 Bulk modulus relaxation data were too noisy to extract any
meaningful minimum slope value. There is excellent agreement between the present results and previously reported16 values. (b) Full width at half maximum
of the loss peak normalized to the width of a Debye process. Again, shear relaxation values are compared to previously reported data by Jakobsen et al.16 In
the case of DC704 there is a good agreement between the two data sets. For 5-PPE there is a small discrepancy in absolute numbers, but not in temperature
dependence. Thus, both width and minimum slope varies weakly with temperature for DC704 and slightly more in the case of 5-PPE. This is consistent with
the small deviations found in the TTS plots in Fig. 4.

The DC shear viscosity is roughly proportional to the relax-
ation time according to the Maxwell relation τ = ηDC

G /G∞,33

since the temperature dependence of G∞ is small compared to
that of the shear viscosity.

In Figs. 9(a) and 9(b), we show the real part of the vis-
cosity η′

G = G′′(ω)/ω as a function of frequency for the two
liquids. Approaching frequencies that are low compared to
the inverse alpha relaxation time, the curves bend over and
settle at a plateau. The DC shear viscosity was identified from
the lowest frequency data point of these curves. For the low-
est temperature of DC704 and the two lowest temperatures of
5-PPE, we do not really observe the plateau, and this proce-
dure thus underestimates the DC shear viscosity at the low-
est temperatures. To circumvent this problem, we shifted one
of the curves with a clear plateau value with the relative
loss-peak position. Since TTS holds to a good approximation
in both DC704 and 5-PPE, this is a valid procedure. These
curves are shown as grey lines and the plateau of these curves
gives a better estimate of the DC shear viscosity at the lowest
temperatures.

We can also infer the DC shear viscosity from the bulk
modulus measurements. At low frequencies the liquid flows
in and out of the hole in the piezo-ceramic shell, and this
Poiseuille flow is governed by the shear viscosity of the
liquid.1 Thus, if the dimension of this “tube” is known, one
is able to determine the shear viscosity from the Helmholtz
mode in the bulk modulus measurements.

Equation (C2) of Appendix C shows that the shear vis-
cosity is proportional to the mechanical flow resistance, RP

(defined below),

ηDC
G = ARP , (5)

where A = πa4/8l is geometric factor, a and l being the radius
and length of the tube, respectively. The dimensions of this
tube were measured to be a = 0.9 mm and l = 3.75 mm. This
gives A = 6.9 × 10−11m3, which is the value used. But even
if we did not know the specifications, the geometric factor is
a number specific to a given measuring cell, which can be cal-
ibrated with a single set of measurements. A Poiseuille flow

(a) (b)

FIG. 9. Determining the shear viscosity from shear modulus measurements for (a) DC704 and (b) 5-PPE. The figures show η′ = G′ ′/ω plotted against frequency.
Clearly, this quantity approaches a constant value for ω → 0, which identifies the static shear viscosity.
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FIG. 10. Determining the flow resistance RP from an impedance Cole-Cole
plot of the Helmholtz mode data of the PBG. The mechanical impedance
of DC704 at 232 K is shown in red symbols, the black solid line shows an
exponential fit, and the arrows show how RP can be determined (see also
Fig. 18 in Appendix C). The data at the right foot point reflect the relatively
large noise in the measurement at low frequencies.

normally requires a � l, which may not be the case here, but
it turns out to be a good approximation.

RP as a function of temperature is determined through
the mechanical impedance, Z = S/iω, where S = δp/δV

is the stiffness found in the bulk modulus measurement
(Eq. (B7)). RP is identified as the low-frequency foot point
of the Cole-Cole representation of the mechanical impedance
from the peak position, Z′′

max = 1/2RP . This is illustrated in
Fig. 10 where the mechanical impedances of DC704 at 234 K
are shown. Data points are (red) dots and an exponential fit is
shown as a solid line. Identifying the peak position requires
the peak to be in the measured frequency window; thus this
method is restricted to relatively high temperatures.

The shear viscosities determined from these two meth-
ods are compared in Fig. 11. For both liquids the viscosi-
ties as measured by these two methods match up perfectly.
This is the case, despite the fact that boundary effects could
well give rise to a correction term to the Poiseuille formula,
which refers to flow in an infinitely long tube. The two funda-
mentally different measuring methods thus confirm the abso-
lute levels of the shear and bulk moduli, since these influence
the determined values of the viscosity. Consequently, combin-
ing the shear and bulk modulus measurements we are able to

measure reliably both moduli for a wide dynamical range. In
particular, the bulk and shear modulus measurements in com-
bination provide a novel and accurate way of measuring the
shear viscosity over ten orders of magnitude.

The bulk viscosity is defined in analogy to the shear vis-
cosity from,

ηK (ω) = K(ω)

iω
. (6)

In principle, we should be able to determine the DC limit anal-
ogous to Eq. (4), ηDC

K = limω→0 K ′′/ω. In Fig. 12, the low-
frequency limit of the bulk viscosity is shown as colored cir-
cles and the shear viscosity as black lines. The bulk viscosity
curves are quite noisy, though, and the procedure of taking the
last data point for each temperature as the DC limit would re-
sult in very noisy data. To extract a meaningful number from
these curves a more advanced approach or some modelling is
needed, which we have not yet done. But the same trend as
for the shear viscosity is observed, namely, that the bulk vis-
cosity bends over to form a plateau at low frequencies, which
also means that the pressure relaxation is exponential at long
times (low frequencies).

Interestingly, the bulk and shear viscosity curves collapse
but not for the same temperatures. For instance, the bulk vis-
cosity curve for 220 K for DC704 falls on top of the shear
viscosity curve for 218 K. The trend is the same for 5-PPE:
the bulk and shear viscosity curves are similar, but at differ-
ent temperatures. We conclude that the bulk and shear vis-
cosities are very similar, though not identical, the bulk vis-
cosity being higher than the shear viscosity at a given tem-
perature. This is in accord with the decoupling between the
time scales of the bulk and shear relaxations found earlier,
assuming a correspondence between bulk viscosity and bulk
modulus relaxation time similar to the Maxwell relation for
shear. The bulk viscosity is higher than the shear viscosity at
all measured temperatures, just as the bulk relaxation time is
longer than the shear relaxation time. Unfortunately, the bulk
viscosity data are not good enough for a more quantitative
statement.

(a) (b)

FIG. 11. Comparing the shear viscosities obtained by two different methods for (a) DC704 and (b) 5-PPE. Circles are determined from the low-frequency limit
of the shear modulus (Eq. (4)) using TTS extrapolation, crosses are the lowest frequency points of the curves in Fig. 9, and full triangles are determined by
analyzing the Helmholtz mode data at low frequencies of the bulk modulus measurement. The agreement between the different methods is excellent. The figure
demonstrates a novel and accurate way to determine the shear viscosity over many decades.
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(a) (b)

FIG. 12. Determining the bulk viscosity from bulk modulus measurements for (a) DC704 and (b) 5-PPE. The figures show log (K′ ′/ω) plotted against frequency.
This quantity approaches a constant value for ω → 0, as was the case for the shear viscosity. For comparison we also plotted the shear viscosity curves (grey
lines). For DC704, the bulk and shear viscosity curves more or less collapse, but at different temperatures. 5-PPE shows the same pattern although with lower
quality of the bulk viscosity curves.

V. SUMMARY

Based on the above we conclude the following:

� TTS is obeyed for both shear and bulk moduli in
DC704, whereas small deviations are seen for 5-PPE.

� There are no clear signs of any β relaxation in DC704
or 5-PPE, but the small deviations from TTS in 5-PPE
may be a signature of a small-amplitude β process.

� The bulk and shear modulus relaxation shapes are
nearly identical for DC704 and 5-PPE.

� The time scales of bulk and shear relaxations are dif-
ferent, but proportional in the measured temperature
range explored.

� The (DC) bulk viscosity is larger than the (DC) shear
viscosity at a given temperature.

� Shear viscosities as determined by η = limω → 0G′′/iω
and as determined by the Poiseuille flow in the PBG
hole agree, showing that absolute levels of the shear
modulus and bulk modulus are mutually consistent.

DC704 and 5-PPE thus show simple patterns of mechan-
ical relaxation. It would be interesting to investigate how gen-
eral these findings are.
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APPENDIX A: MODELING THE PSG

The PSG consists of three electrode-covered piezo-
electric ceramic discs mounted in a layered construction,
which prevents unwanted bending of the discs and further has

the advantage that it can be mapped mathematically to a one-
disc system involving a fixed wall.2

The liquid is loaded into the 0.5 mm gaps between the
discs (Fig. 1). Depending on the polarity of the discs com-
pared with the direction of an applied electric field, the discs
expand or contract in the radial direction. Electrically, the
middle disc is connected in parallel with the two outer discs in
series as shown in Fig. 1. Here, the small dots indicate the po-
larity of the piezo-electric discs. Thus, when an electric field
is applied, the middle disc moves in opposition to the two
outer discs. With this construction, the gap between the discs
is field-free, and the liquid is subjected to a purely mechanical
perturbation.

The capacitance of each disc depends on its strain state,
so if the liquid partially clamps the disc (thus hindering its
motion), the measured capacitance is lower than that of freely
moving discs. By measurement of the electrical capacitance
of the PSG, one can obtain the stiffness of the liquid in con-
tact with the disc. In other words, one converts the electric
impedance into the shear modulus knowing the exact relation-
ship between the two.

The elasto-electric compliance matrix describes the rela-
tion between the components of the stress σ ij and strain εij

tensors to the electrical field of the piezo-electric material.2

The equations describing an axially polarized ceramic can be
split into four independent parts, the relevant of which can be
reduced to the following:2

⎛
⎜⎝

σrr

σφφ

Dz

⎞
⎟⎠ =

⎛
⎜⎝

c11 c12 −e13

c12 c11 −e13

e13 e13 εS
33

⎞
⎟⎠

⎛
⎜⎝

εrr

εφφ

Ez

⎞
⎟⎠ , (A1)

where Ez is the z-component of the electric field, Dz is the
displacement field, c11 and c12 are elastic constants of the ce-
ramic, εS

33 is the dielectric constant, and e13 is a piezo-electric
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constant. All of these quantities are weakly frequency
dependent.

The measured capacitance Cm of the disc can be found
by integrating the charge density Dz to find the total charge Q
and dividing by the voltage U,

Cm = Q

U
=

∫ r0

0 2πrDz(r) dr

ξEz

, (A2)

where ξ is the thickness of the disc. Dz depends both on the
strain state and the applied electrical field Ez. Evaluating this
integral, it is found2 that the capacitance is a function of the
radial displacement at the edge of the disc ur(r0),

Cm = Aur (r0) + B, (A3)

where A and B are known constants.
It remains to determine the displacement at the edge of

the disc ur(r0) as a function of rigidity of the liquid. The dis-
placement ur is found by solving the radial equation of mo-
tion, which reduces to2

c11(r2(u′′
r ) + u′

r − ur ) − σl

r2

ξ
= −ω2r2ρur, (A4)

where the prime indicates the derivative with respect to r, and
σ l is the tangential stress that the liquid exerts on the disc. σ l

is by definition proportional to the shear modulus of the liquid
σ l = G(ω)ur/d, where d is the thickness of the liquid layer (or
equivalently 1/3 of the distance between the discs).

Figure 13 shows the measured capacitance of the empty
(black trace) and liquid-filled (blue trace) PSG. At high tem-
peratures, there is no influence from the liquid at these fre-
quencies and the two spectra are identical. The spikes in the
spectrum are mechanical resonances of the discs. At lower
temperatures, the shear modulus of the liquid increases and
partially clamps the discs in the quasi-static region. This is
observed as a drop in the capacitance below the first reso-
nances. The liquid also influences the position of the higher
harmonics as compared with the spectrum of the empty de-
vice. At frequencies below the first resonances, which we re-
fer to as the quasi-static region, the shear modulus is found by
the described inversion procedure.2 The inverted data, i.e., the

FIG. 13. Raw data of the empty (black) and liquid-filled (blue) PSG at two
different temperatures. At 300 K the presence of the liquid does not affect the
signal because the liquid is quite fluid. At 226 K the liquid partial clamps the
discs, which is manifested as a drop in capacitance in the quasi-static region
and a shift of the resonances in the high-frequency region.

complex shear modulus as function of frequency can be seen
in Fig. 3.

APPENDIX B: MODELING THE PBG

If the thickness of the ceramic shell is assumed to be van-
ishing, one can model the bulk transducer by an electrical cir-
cuit. The model presented here is equivalent to the model of
Christensen and Olsen,1 even though they did not explicitly
state the electrical circuit model for the PBG.

Figure 14 shows the electrical equivalent circuit of the
piezo-ceramic shell that illustrates how we model the bulk
transducer. The model has an electrical side that models the
electrical input, here the capacitor models the electrodes of
the shell and the dielectric properties of the ceramic. On the
right-hand side, the mechanical properties of the ceramic are
modelled. The conversion from electrical to mechanical en-
ergy happens through the transducer element. On the me-
chanical side, the capacitor models the elastic properties of
the ceramic, the inductance models the mass (or inertance),
and the resistor models the friction. Seen from the electrical
side, the mechanical and electrical sides are connected in par-
allel. This results from a consideration of limits: at high fre-
quencies where the ceramic is mechanically clamped there
is still charge on the electrodes, thus the electrical capacitor
cannot be in series with the mechanical side. The mechani-
cal elements are connected in series because they are all sub-
jected to the same volume change (the mechanical equivalent
of charge).

With this electrical circuit established, it is easy to con-
struct the mathematical expression that gives the measured
capacitance for the empty transducer,

Cemp
m (ω) = C1 + T 2 1

1
C2

+ iωR − ω2L
. (B1)

We rewrite this in terms of more familiar and recognizable
quantities as follows:

Cemp
m (ω) = Ccl + Cfr − Ccl

1 + i ω
ω0

1
Q

−
(

ω
ω0

)2 , (B2)

FIG. 14. Model of the bulk transducer. The electrical part (the capacitor)
models the electrodes on the piezo-ceramic shell, the transformer models
the conversion from electric displacement (charge) to deformation (volume
change) in the ceramic. The RCL series models the mechanical properties
of the PZ shell itself. For the empty tranducer, the mechanical port is short-
circuited (i.e., free to move), while a filled transducer adds an extra element
(box) in series with the RCL series.
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FIG. 15. Spectrum of the empty bulk transducer at 315 K (circles) and the
fitted model (full line). The model fits the data well. The “jitter” on the high
frequency side of the resonance is probably extra resonance modes reflecting
a slightly imperfect spherical geometry.

where Ccl = C1 is the “clamped” capacitance (ω → ∞), Cfr

= C1 + T2C2 is the “free” capacitance (ω → 0), ω0

= √
1/LC2 is the resonance frequency, and Q =

(1/R)
√

L/C2 is the quality factor.
From fitting this expression to the spectrum of the empty

capacitor, we can determine the four quantities Cfr, Ccl, Q,
and ω0. An example of the fit is shown in Fig. 15. The model
(full line) fits the data (circles) very well.

According to our model, the measured capacitance for
the liquid-filled transducer is

C liq
m (ω) = Ccl + Cfr − Ccl

1 + i ω
ω0

1
Q

−
(

ω
ω0

)2
+ C2

Cliq

. (B3)

This means that in order to de-convolve the stiffness of the liq-
uid one must determine C2. With only four fitted parameters
and five in the model we need to determine the fifth by another
method. Fortunately, the inductance L can be determined by
measuring dimension and weight of the transducer. L is the
constant of proportionality between the (generalized) voltage
and charge acceleration, which expressed in mechanical vari-
ables is the pressure difference δp and volume acceleration
δV̈ ,

δp = LδV̈ . (B4)

L is a constant of the specific bulk transducer and should be
temperature independent. This means that we only need to
determine this number once for each bulk transducer.

Expressing δp as a force per unit area, this force will be
given by mass times acceleration, i.e., δp = mür/A. Since the
displacement is small, we can approximate the change in vol-
ume by δV ≈ Aur . In summary, we get

L = δp

δV̈
≈ ürm/A

Aür

= m

A2
. (B5)

An estimate of the mass of the piezo-ceramic shell can be
found by weighing the bulk transducer and subtracting the
mass of the attached reservoir. For the surface area we need
to be a little more careful: the model of the PBG assumes
vanishing thickness of PZ shell, but this is of course just an

approximation. Thus, we should find an “effective” surface
area, which will be between the outer and inner surface of the
shell. Assuming an average of the two gives a good estimate
of L.

For simplicity, we define the dimensionless measured ca-
pacitance,

F (ω) = C
liq
m (ω) − Ccl

Cfr − Ccl
. (B6)

Finally, the complex stiffness of the liquid (defined as
S = δp/δV ) can be expressed in terms of the four fitted pa-
rameters and L,

Sliq(ω) = 1

Cliq(ω)
= Lω2

0

{
1

F
− 1 − i

ω

ω0

1

Q
+

(
ω

ω0

)2
}

.

(B7)
The bulk modulus K is then found as K = V S, where V is the
volume of the liquid (inner volume of the shell).

APPENDIX C: MODELLING THE FLOW THROUGH
THE HOLE

At high frequencies the hole is essentially blocked be-
cause the liquid does not have time to flow in and out during
one frequency cycle. In that case we can consider the liquid
inside as a perfect spherical “ball.”

At high temperatures (far above Tg), the liquid flow-
ing in and out of the hole is a Helmholtz resonator, but as
temperature is lowered, this resonance gets damped due to
the increase in viscosity. When the resonance gets critically
damped, it moves down in frequency upon further cooling. In
Fig. 16, this is shown for DC704.

At low enough frequencies the liquid is able to flow in
and out of the hole. This flow can be assumed to be inertia
free since it is extremely slow, and it can thus be modelled
as a Poiseuille flow. A Poiseuille flow describes the laminar
flow of fluid in a pipe with radius a and length l (l > a) with
a no-slip boundary condition at the walls of the pipe.

FIG. 16. The measured capacitance of DC704. At high temperatures the liq-
uid flowing in and out of the hole gives rise to a resonance. When the tem-
perature is lowered this resonance gets damped because the viscosity of the
liquid increases. Finally, when the resonance is critically damped, it moves
down in frequency as temperature is lowered.
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FIG. 17. The electrical network model of the PBG of Fig. 14 with an extra
element added to model the flow through the hole.

For a Poiseuille flow the volume flow is given by the fol-
lowing expression (for a derivation see, e.g., Ref. 34):

V̇ = πa4δp

8ηGl
, (C1)

where ηG is the (shear) viscosity, V̇ is the volume flow-rate,
and δp is the pressure difference across the “pipe.”

In the framework of the electrical network model, the
flow can be added as a resistor in parallel with the liquid,
since it is subjected to the same pressure difference (we ig-
nore the mass since the flow is so slow that inertial effects are
vanishing). This is illustrated in Fig. 17. From Eq. (C1), we
obtain an expression for this resistor which is basically the
shear viscosity times a geometric factor

RP = δp

V̇
= 8l

πa4
ηG , (C2)

which we use later.
We determine RP from the mechanical impedance of the

measured signal (Z = S/(iω) = 1/iωCm). The impedance of
the signal coming from the liquid is given by

Z = 1

1/RP + iωCliq
= RP

1

1 + iωτ
, (C3)

where τ = RP Cliq. The flow through the hole is thus de-
scribed by a pure exponential, and plotting the imaginary part
versus the real part will describe a semi-circle with RP as the

FIG. 18. Determining the shear viscosity from the Helmholtz mode. The
flow resistance RP can be determined by the high-frequency limit of the me-
chanical impedance, Z = V S/iω. Since the Helmholtz mode is Debye-like,
however, the Z traces out a semi-circle (see Fig. 10) and we only need to
know the peak position to determine R. Here, we used a double-log plot to fit
all data in the same window, which of course distorts the circular shape.

low frequency foot point. An example of this is shown in the
main text in Fig. 10, where the red circles are data points and
the black solid line shows the exponential fit. Because the data
trace out a semi-circle with the centre on the real axis, RP can
also be found as twice the value of Z′ at the top point,

RP = 2Z′(ωmax), (C4)

which is easy to determine. In Fig. 18, we show this for a
range of different temperatures. Here, both the real and imag-
inary axes are plotted logarithmically to contain all data in one
plot and thus it is not obvious to the eye that the data trace out
semicircles. The cross marks the peak position for each tem-
perature which is then proportional to the shear viscosity.
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