21 research outputs found

    Simulating the carbon cycling of croplands - model development, diagnosis, and regional application through data assimilation

    Get PDF
    In the year 2000, croplands covered about 12% of the Earth’s ice-free land surface. Through cropland management, humankind momentarily appropriates about 25% of terrestrial ecosystem productivity. Not only are croplands a key element of human food supply, but also bear potential in increased carbon (C) uptake when best-practice land management approaches are adopted. A detailed assessment of the impact of land use on terrestrial ecosystems can be achieved by modelling, but the simulation of crop C cycling itself is a relatively new discipline. Observational data on crop net ecosystem exchange (NEE) are available only recently, and constitute an important tool for model development, diagnosis, and validation. Before crop functional types (CFT) had been introduced, however, large-scale biogeochemical models (BGCM) lacked crop-specific patterns of phenology, C allocation, and land management. As a consequence, the influence of cropland C cycling on biosphere-atmosphere C exchange seasonality and magnitude is currently poorly known. To date, no regional assessment of crop C cycling and yield formation exists that specifically accounts for spatially and temporally varying patterns of sowing dates within models. In this thesis, I present such an assessment for the first time. In the first step (chapter 2), I built a crop C mass balance model (SPAc) that models crop development and C allocation as a response to ambient meteorological conditions. I compared model outputs against C flux and stock observations of six different sites in Europe, and found a high degree of agreement between simulated and measured fluxes (R2 = 0.83). However, the model tended to overestimate leaf area index (LAI), and underestimate final yield. In a model comparison study (chapter 3), I found in cooperation with further researchers that SPAc best reproduces observed fluxes of C and water (owed to the model’s high temporal and process resolution), but is deficient due to a lack in simulating full crop rotations. I then conducted a detailed diagnosis of SPAc through the assimilation of C fluxes and biometry with the Ensemble Kalman Filter (EnKF, chapter 4), and identified potential model weaknesses in C allocation fractions and plant hydraulics. Further, an overestimation of plant respiration and seasonal leaf thickness variability were evident. Temporal parameter variability as a response to C flux data assimilation (DA) is indicative of ecosystem processes that are resolved in NEE data but are not captured by a model’s structure. Through DA, I gained important insights into model shortcomings in a quantitative way, and highlighted further needs for model improvement and future field studies. Finally, I developed a framework allowing for spatio-temporally resolved simulation of cropland C fluxes under observational constraints on land management and canopy greenness (chapter 5). MODIS (Moderate Resolution Imaging Spectroradiometer) data were assimilated both variationally (for sowing date estimation) and sequentially (for improved model state estimation, using the EnKF) into SPAc. In doing so, I was able to accurately quantify the multiannual (2000-2006) regional C flux and biometry seasonality of maize-soybean crop rotations surrounding the Bondville Ameriflux eddy covariance (EC) site, averaged over 104 pixel locations within the wider area. Results show that MODIS-derived sowing dates and the assimilation of LAI data allow for highly accurate simulations of growing season C cycling at locations for which groundtruth sowing dates are not available. Through quantification of the spatial variability in biometry, NEE, and net biome productivity (NBP), I found that regional patterns of land management are important drivers of agricultural C cycling and major sources of uncertainty if not appropriately accounted for. Observing C cycling at one single field with its individual sowing pattern is not sufficient to constrain large-scale agroecosystem behaviour. Here, I developed a framework that enables modellers to accurately simulate current (i.e. last 10 years) C cycling of major agricultural regions and their contribution to atmospheric CO2 variability. Follow-up studies can provide crucial insights into testing and validating large-scale applications of biogeochemical models

    Gap-filling a spatially explicit plant trait database : comparing imputation methods and different levels of environmental information

    Get PDF
    The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets

    Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project

    Get PDF
    New cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS are presented. Two retrieval systems were developed that include components for cloud detection and cloud typing followed by cloud property retrievals based on the optimal estimation (OE) technique. The OE-based retrievals are applied to simultaneously retrieve cloud-top pressure, cloud particle effective radius and cloud optical thickness using measurements at visible, near-infrared and thermal infrared wavelengths, which ensures spectral consistency. The retrieved cloud properties are further processed to derive cloud-top height, cloud-top temperature, cloud liquid water path, cloud ice water path and spectral cloud albedo. The Cloud_cci products are pixel-based retrievals, daily composites of those on a global equal-angle latitude–longitude grid, and monthly cloud properties such as averages, standard deviations and histograms, also on a global grid. All products include rigorous propagation of the retrieval and sampling uncertainties. Grouping the orbital properties of the sensor families, six datasets have been defined, which are named AVHRR-AM, AVHRR-PM, MODIS-Terra, MODIS-Aqua, ATSR2-AATSR and MERIS+AATSR, each comprising a specific subset of all available sensors. The individual characteristics of the datasets are presented together with a summary of the retrieval systems and measurement records on which the dataset generation were based. Example validation results are given, based on comparisons to well- established reference observations, which demonstrate the good quality of the data. In particular the ensured spectral consistency and the rigorous uncertainty propagation through all processing levels can be considered as new features of the Cloud_cci datasets compared to existing datasets. In addition, the consistency among the individual datasets allows for a potential combination of them as well as facilitates studies on the impact of temporal sampling and spatial resolution on cloud climatologies

    Carbon cycling of European croplands:A framework for the assimilation of optical and microwave Earth observation data

    Get PDF
    Worldwide, cropland ecosystems play a significant role in the global carbon (C) cycle. However, quantifying and understanding the cropland C cycle are complex, due to variable environmental drivers, varied management practices and often highly heterogeneous landscapes. Efforts to upscale processes using simulation models must resolve these challenges. In this study we show how data assimilation (DA) approaches can link C cycle modelling to Earth observation (EO) and reduce uncertainty in upscaling. We evaluate a framework for the assimilation of leaf area index (LAI) time-series, derived from EO optical and radar sensors, for state-updating a model of crop development and C fluxes. Sensors are selected with fine spatial resolutions (20–50 m) to resolve variability across field sizes typically used in European agriculture (1.5–97.6 ha). Sequential DA is used to improve the canopy development simulation, which is validated by comparing time-series of net ecosystem exchange (NEE) predictions to independent eddy covariance observations at multiple European cereal crop sites. From assimilating all EO LAI estimates, results indicated adjustments in LAI and, through an enhanced representation of C exchanges, the predicted at-harvest cumulative NEE was improved for all sites by an average of 69% when compared to the model without DA. However, using radar sensors, being relatively unaffected by cloud cover and more sensitive to the structural properties of crops, further improvements were achieved when compared to the combined, and individual, use of optical data. Specifically, when assimilating radar LAI estimates only, the cumulative NEE estimation was improved by 79% when compared to the simulation without DA. Future developments would include the assimilation of additional state variables, such as soil moisture

    Reassessing global change research priorities in mediterranean terrestrial ecosystems : how far have we come and where do we go from here?

    Get PDF
    Aim: Mediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio-economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change. - Location: Mediterranean terrestrial ecosystems. - Methods: This article revisits the research priorities proposed in a 1998 assessment. - Results: A new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire-spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance between C storage and water resources; (10) to analyse the interplay between landscape-scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio-economic contexts; (12) to understand forest-atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology. - Main conclusions:(1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional- and global-scale models that are more tightly connected with large-scale experiments, data networks and management practice. (3) More attention should be directed to drought-related forest decline and the current relevance of historical land use

    Simulating the carbon cycling of croplands : model development, diagnosis, and regional application through data assimilation

    No full text
    In the year 2000, croplands covered about 12% of the Earth’s ice-free land surface. Through cropland management, humankind momentarily appropriates about 25% of terrestrial ecosystem productivity. Not only are croplands a key element of human food supply, but also bear potential in increased carbon (C) uptake when best-practice land management approaches are adopted. A detailed assessment of the impact of land use on terrestrial ecosystems can be achieved by modelling, but the simulation of crop C cycling itself is a relatively new discipline. Observational data on crop net ecosystem exchange (NEE) are available only recently, and constitute an important tool for model development, diagnosis, and validation. Before crop functional types (CFT) had been introduced, however, large-scale biogeochemical models (BGCM) lacked crop-specific patterns of phenology, C allocation, and land management. As a consequence, the influence of cropland C cycling on biosphere-atmosphere C exchange seasonality and magnitude is currently poorly known. To date, no regional assessment of crop C cycling and yield formation exists that specifically accounts for spatially and temporally varying patterns of sowing dates within models. In this thesis, I present such an assessment for the first time. In the first step (chapter 2), I built a crop C mass balance model (SPAc) that models crop development and C allocation as a response to ambient meteorological conditions. I compared model outputs against C flux and stock observations of six different sites in Europe, and found a high degree of agreement between simulated and measured fluxes (R2 = 0.83). However, the model tended to overestimate leaf area index (LAI), and underestimate final yield. In a model comparison study (chapter 3), I found in cooperation with further researchers that SPAc best reproduces observed fluxes of C and water (owed to the model’s high temporal and process resolution), but is deficient due to a lack in simulating full crop rotations. I then conducted a detailed diagnosis of SPAc through the assimilation of C fluxes and biometry with the Ensemble Kalman Filter (EnKF, chapter 4), and identified potential model weaknesses in C allocation fractions and plant hydraulics. Further, an overestimation of plant respiration and seasonal leaf thickness variability were evident. Temporal parameter variability as a response to C flux data assimilation (DA) is indicative of ecosystem processes that are resolved in NEE data but are not captured by a model’s structure. Through DA, I gained important insights into model shortcomings in a quantitative way, and highlighted further needs for model improvement and future field studies. Finally, I developed a framework allowing for spatio-temporally resolved simulation of cropland C fluxes under observational constraints on land management and canopy greenness (chapter 5). MODIS (Moderate Resolution Imaging Spectroradiometer) data were assimilated both variationally (for sowing date estimation) and sequentially (for improved model state estimation, using the EnKF) into SPAc. In doing so, I was able to accurately quantify the multiannual (2000-2006) regional C flux and biometry seasonality of maize-soybean crop rotations surrounding the Bondville Ameriflux eddy covariance (EC) site, averaged over 104 pixel locations within the wider area. Results show that MODIS-derived sowing dates and the assimilation of LAI data allow for highly accurate simulations of growing season C cycling at locations for which groundtruth sowing dates are not available. Through quantification of the spatial variability in biometry, NEE, and net biome productivity (NBP), I found that regional patterns of land management are important drivers of agricultural C cycling and major sources of uncertainty if not appropriately accounted for. Observing C cycling at one single field with its individual sowing pattern is not sufficient to constrain large-scale agroecosystem behaviour. Here, I developed a framework that enables modellers to accurately simulate current (i.e. last 10 years) C cycling of major agricultural regions and their contribution to atmospheric CO2 variability. Follow-up studies can provide crucial insights into testing and validating large-scale applications of biogeochemical models.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    No full text
    Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO₂ concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, and thus these remain rather crudely approximated within carbon cycle studies. In this study, we present a framework allowing for spatio-temporally resolved simulation of cropland carbon fluxes under observational constraints on land management and canopy greenness. We apply data assimilation methodology in order to explicitly account for information on sowing dates and model leaf area index. MODIS 250 m vegetation index data were assimilated both in batch-calibration for sowing date estimation and sequentially for improved model state estimation, using the ensemble Kalman filter (EnKF), into a crop carbon mass balance model (SPAc). In doing so, we are able to quantify the multiannual (2000-2006) regional carbon flux and biometry seasonality of maize-soybean crop rotations surrounding the Bondville Ameriflux eddy covariance site, averaged over 104 pixel locations within the wider area. (1) Validation at the Bondville site shows that growing season C cycling is simulated accurately with MODIS-derived sowing dates, and we expect that this framework allows for accurate simulations of C cycling at locations for which ground-truth data are not available. Thus, this framework enables modellers to simulate current (i.e. last 10 yr) carbon cycling of major agricultural regions. Averaged over the 104 field patches analysed, relative spatial variability for biometry and net ecosystem exchange ranges from ∼7% to ∼18%. The annual sign of net biome productivity is not significantly different from carbon neutrality. (2) Moreover, observing carbon cycling at one single field with its individual sowing pattern is not sufficient to constrain large-scale agroecosystem carbon flux seasonality. Study area average growing season length is 20 days longer than observed at Bondville, primarily because of an earlier estimated start of season. (3) For carbon budgeting, additional information on cropland soil management and belowground carbon cycling has to be considered, as such constraints are not provided by MODIS

    Synthesis of Human Phase I and Phase II Metabolites of Hop (Humulus lupulus) Prenylated Flavonoids

    No full text
    Hop prenylated flavonoids have been investigated for their in vivo activities due to their broad spectrum of positive health effects. Previous studies on the metabolism of xanthohumol using untargeted methods have found that it is first degraded into 8-prenylnaringenin and 6-prenylnaringenin, by spontaneous cyclisation into isoxanthohumol, and subsequently demethylated by gut bacteria. Further combinations of metabolism by hydroxylation, sulfation, and glucuronidation result in an unknown number of isomers. Most investigations involving the analysis of prenylated flavonoids used surrogate or untargeted approaches in metabolite identification, which is prone to errors in absolute identification. Here, we present a synthetic approach to obtaining reference standards for the identification of human xanthohumol metabolites. The synthesised metabolites were subsequently analysed by qTOF LC-MS/MS, and some were matched to a human blood sample obtained after the consumption of 43 mg of micellarised xanthohumol. Additionally, isomers of the reference standards were identified due to their having the same mass fragmentation pattern and different retention times. Overall, the methods unequivocally identified the metabolites of xanthohumol that are present in the blood circulatory system. Lastly, in vitro bioactive testing should be applied using metabolites and not original compounds, as free compounds are scarcely found in human blood

    Synthesis of Human Phase I and Phase II Metabolites of Hop (<i>Humulus lupulus</i>) Prenylated Flavonoids

    No full text
    Hop prenylated flavonoids have been investigated for their in vivo activities due to their broad spectrum of positive health effects. Previous studies on the metabolism of xanthohumol using untargeted methods have found that it is first degraded into 8-prenylnaringenin and 6-prenylnaringenin, by spontaneous cyclisation into isoxanthohumol, and subsequently demethylated by gut bacteria. Further combinations of metabolism by hydroxylation, sulfation, and glucuronidation result in an unknown number of isomers. Most investigations involving the analysis of prenylated flavonoids used surrogate or untargeted approaches in metabolite identification, which is prone to errors in absolute identification. Here, we present a synthetic approach to obtaining reference standards for the identification of human xanthohumol metabolites. The synthesised metabolites were subsequently analysed by qTOF LC-MS/MS, and some were matched to a human blood sample obtained after the consumption of 43 mg of micellarised xanthohumol. Additionally, isomers of the reference standards were identified due to their having the same mass fragmentation pattern and different retention times. Overall, the methods unequivocally identified the metabolites of xanthohumol that are present in the blood circulatory system. Lastly, in vitro bioactive testing should be applied using metabolites and not original compounds, as free compounds are scarcely found in human blood
    corecore