1,723 research outputs found

    Can drug safety be predicted and animal experiments reduced by using isolated mitochondrial fractions?

    Get PDF
    Mitochondrial toxicity has resulted in the withdrawal of several drugs from the market. One particular example is nefazodone, an anti-depressant withdrawn in the USA due to hepatoxicity caused by drug-induced mitochondrial dysfunction. Drug development and safety testing can involve the use of large numbers of laboratory animals, which, without a decisive pre-screening for mitochondrial toxicity, are often unable to pre-empt higher mortality rates in some patient groups. The use of isolated mitochondria as a screening tool for drug safety can decrease the number of laboratory animals used in pre-clinical studies, thus improving animal welfare and healthcare outcomes and costs. Novel techniques involving high-throughput methods can be used to investigate whether a molecule is a mitochondrial toxicant. Moreover, these screens are mechanistically-based, since the effects of the drug on oxidative phosphorylation, calcium homeostasis and mitochondrial genetics can be assessed. This review is intended to demonstrate that isolated mitochondrial fractions are suitable for predicting drug and general chemical safety in toxicological screenings, thus contributing to the refinement and reduction of animal use in laboratory research

    Infrasound exposure promotes development of atrial fibrosis in rats

    Get PDF
    INTRODUCTION: Recent data has shown a significant association between noise exposure and atrial fibrillation (AF) in a large cohort [1] but the pathophysiology remains unclear. The acoustic spectrum of industrial environments is particularly rich in high-intensity infrasound (IFS), which we have previously found to induce coronary perivascular fibrosis in rat hearts [2–4]. The role of atrial fibrosis in AF is well documented and remains the cornerstone of atrial pathology in patients with this arrhythmia [5]. The aim of this study was to evaluate and measure the atrial interstitial fibrosis in rats exposed to high-intensity IFS. MATERIAL AND METHODS: Twelve Wistar rats exposed to high-intensity IFS (110 dB, <20Hz) during a period of 6 weeks and 12 age-matched controls were studied. All the handling and care of the experimental animals was performed by authorised researchers and was done in accordance with the EU Commission on Animal Protection for Experimental and Scientific Purposes (2010/63/EU). Hearts were transversely sectioned and the atrial fragment was selected for analysis. Chromotrope-aniline blue staining was used for histological observation and the images were obtained with an optical microscope using 400× magnifications. For each atrium, three optical fields containing more prominent fibrotic development in the absence of any arterial vessel were selected. The measurement of fibrosis was performed using Image J software. Mann–Whitney test was used to compare the groups. RESULTS: The mean values of atrial interstitial fibrosis were 8.96 ± 4.08 and 4.91 ± 1.46, respectively, in IFS-exposed rats and controls. IFS-exposed rats exhibited a significant increase in atrial interstitial fibrosis (p = .005). DISCUSSION AND CONCLUSION: High-intensity IFS induces atrial interstitial fibrosis in rats. This finding reinforces the need for further experimental and clinical studies concerning the effects of IFS on the heart

    Effects of low-frequency noise on cardiac collagen and cardiomyocyte ultrastructure: an immunohistochemical and electron microscopy study

    Get PDF
    "Introduction: Low-frequency noise (LFN) leads to the development of tissue fibrosis. We previously reported the development of myocardial and perivascular fibrosis and a reduction of cardiac connexin43 in rats, but data is lacking concerning the affected type of collagen as well as the ultrastructural myocardial modifications. Objectives: The aim of this study was to quantify cardiac collagens I and III and to evaluate myocardial ultrastructural changes in Wistar rats exposed to LFN. Methods: Two groups of rats were considered: A LFN-exposed group with 8 rats continuously submitted to LFN during 3 months and a control group with 8 rats. The hearts were sectioned and the mid-ventricular fragment was selected. After immunohistochemical evaluation, quantification of the collagens and muscle were performed using the image J software in the left ventricle, interventricular septum and right ventricle and the collagen I/muscle and collagen III/muscle ratios were calculated. Transmission electron microscopy (TEM) was used to analyze mid-ventricular samples taken from each group. Results: The collagen I/muscle and collagen III/muscle ratios increased in totum respectively 80% (p<0.001) and 57.4% (p<0.05) in LFN-exposed rats. TEM showed interstitial collagen deposits and changes in mitochondria and intercalated discs of the cardiomyocytes in LFN-exposed animals. Conclusions: LFN increases collagen I and III in the extracellular matrix and induces ultrastructural alterations in the cardiomyocytes. These new morphological data open new and promising paths for further experimental and clinical research regarding the cardiac effects of low-frequency noise.

    The Impact of the Serum Extraction Protocol on Metabolomic Profiling Using UPLC-MS/MS and FTIR Spectroscopy

    Get PDF
    Funding Information: This research was funded by Fundação para a Ciência e a Tecnologia (FCT), Grants DSAIPA/DS/0117/2020 and RNEM-LISBOA-01-0145-FEDER-022125 (Portuguese Mass Spectrometry Network). The Centro de Química Estrutural is a Research Unit funded by FCT through projects UIDB/00100/2020 and UIDP/00100/2020. The Institute of Molecular Sciences is an Associate Laboratory funded by FCT through project LA/P/0056/2020. Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient’s survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.publishersversionpublishe

    Variability in motor threshold

    Get PDF
    Funding Information: GC was funded by Funda??o para a Ci?ncia e Tecnologia (FCT; Portugal) through a PhD Scholarship (SFRH/BD/130210/2017). AJO-M was funded by FCT (Portugal) through a Junior Research and Career Development Award from the Harvard Medical School ? Portugal Program (HMSP-ICJ/0020/2011). GC and AJO-M were supported by grant PTDC/MED-NEU/31331/2017, and AJO-M by grant PTDC/MED-NEU/30302/2017, funded by national funds from FCT/MCTES and co-funded by FEDER, under the Partnership Agreement Lisboa 2020 - Programa Operacional Regional de Lisboa. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the Funda??o para a Ci?ncia e Tecnologia, Harvard University or its affiliated academic health care centers. Funding Information: GC was funded by Fundação para a Ciência e Tecnologia (FCT; Portugal) through a PhD Scholarship ( SFRH/BD/130210/2017 ). AJO-M was funded by FCT (Portugal) through a Junior Research and Career Development Award from the Harvard Medical School – Portugal Program ( HMSP-ICJ/0020/2011 ). GC and AJO-M were supported by grant PTDC/MED-NEU/31331/2017, and AJO-M by grant PTDC/MED-NEU/30302/2017, funded by national funds from FCT/MCTES and co-funded by FEDER , under the Partnership Agreement Lisboa 2020 - Programa Operacional Regional de Lisboa. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the Fundação para a Ciência e Tecnologia, Harvard University or its affiliated academic health care centers. Funding Information: AJO-M was national coordinator for Portugal of a non-interventional study (EDMS-ERI-143085581, 4.0) to characterize a Treatment-Resistant Depression Cohort in Europe, sponsored by Janssen-Cilag, Ltd (2019–2020), is recipient of a grant from Schuhfried GmBH for norming and validation of cognitive tests, and is national coordinator for Portugal of trials of psilocybin therapy for treatment-resistant depression, sponsored by Compass Pathways, Ltd (EudraCT number 2017-003288-36 and 2020-001348-25), and of esketamine for treatment-resistant depression, sponsored by Janssen-Cilag, Ltd (EudraCT NUMBER: 2019-002992-33). AP-L is a co-founder of Linus Health and TI Solutions AG; serves on the scientific advisory boards for Starlab Neuroscience, Magstim Inc., Radiant Hearts, and MedRhythms; and is listed as an inventor on several issued and pending patents on the real-time integration of noninvasive brain stimulation with electroencephalography and magnetic resonance imaging. None of the aforementioned agencies or companies had a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication. The remaining authors have declared that they have no potential conflicts of interest involving this work, including relevant financial activities outside the submitted work and any other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing what is written.publishersversionpublishe

    Clinical implications

    Get PDF
    Funding: GC was funded by Fundaçao para a Ciência e Tecnologia (FCT; Portugal) through a PhD Scholarship (SFRH/BD/130210/2017). AJOM was funded by FCT (Portugal) through a Junior Research and Career Development Award from the Harvard Medical School e Portugal Program (HMSP-ICJ/0020/2011). GC and AJO-M were supported by grant PTDC/MED-NEU/31331/2017, and AJO-M by grant PTDC/MED-NEU/30302/2017, funded by national funds from FCT/MCTES and co-funded by FEDER, under the Partnership Agreement Lisboa 2020 - Programa Operacional Regional de Lisboa. The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the Fundaçao para a Ciência e Tecnologia, Harvard University or its affiliated academic health care centers. AJO-M was national coordinator for Portugal of a noninterventional study (EDMS-ERI-143085581, 4.0) to characterize a Treatment-Resistant Depression Cohort in Europe, sponsored by Janssen-Cilag, Ltd (2019e2020), is recipient of a grant from Schuhfried GmBH for norming and validation of cognitive tests, and is national coordinator for Portugal of trials of psilocybin therapy for treatment-resistant depression, sponsored by Compass Pathways, Ltd (EudraCT number 2017-003288-36 and 2020-001348- 25), and of esketamine for treatment-resistant depression, sponsored by Janssen-Cilag, Ltd (EudraCT NUMBER: 2019-002992-33). AP-L is a co-founder of Linus Health and TI Solutions AG; serves on the scientific advisory boards for Starlab Neuroscience, Neuroelectrics, Magstim Inc., Nexstim, Cognito, and MedRhythms; and is listed as an inventor on several issued and pending patents on the real-time integration of noninvasive brain stimulation with electroencephalography and magnetic resonance imaging. None of the aforementioned agencies had a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication. The remaining authors have declared that they have no potential conflicts of interest involving this work, including relevant financial activities outside the submitted work and any other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing what is written.Background: When repetitive transcranial magnetic stimulation (rTMS) is used to treat medication refractory depression, the treatment pulse intensity is individualized according to motor threshold (MT). This measure is often acquired only on the first day of treatment, as per the protocol currently approved by Food and Drug Administration. Objective: Here, we aimed to assess daily MT variability across an rTMS treatment course and simulate the effects of different schedules of MT assessment on treatment intensity. Methods: We conducted a naturalistic retrospective study with 374 patients from a therapeutic rTMS program for depression that measures MT daily. Results: For each patient, in almost half the TMS sessions, MT varied on average more than 5% as compared to the baseline MT acquired in the first treatment day. Such variability was only minimally impacted by having different TMS technicians acquiring MT in different days. In a smaller cohort of healthy individuals, we confirmed that the motor hotspot localization method, a critical step for accurate MT assessment, was stable in different days, arguing that daily MT variability reflects physiological variability, rather than an artifact of measurement error. Finally, in simulations of the effect of one-time MT measurement, we found that half of sessions would have been 5% or more above or below target intensity, with almost 5% of sessions 25% above target intensity. The simulated effects of weekly MT measurements were significantly improved. Conclusions: In conclusion, MT varies significantly across days, not fully dependent on methods of MT acquisition. This finding may have important implications for therapeutic rTMS practice regarding safety and suggests that regular MT assessments, daily or at least weekly, would ameliorate the effect.publishersversionpublishe

    Open-source tool for real-time and automated analysis of droplet-based microfluidic

    Get PDF
    Publisher Copyright: © 2023 The Royal Society of Chemistry.Droplet-based microfluidic technology is a powerful tool for generating large numbers of monodispersed nanoliter-sized droplets for ultra-high throughput screening of molecules or single cells. Yet further progress in the development of methods for the real-time detection and measurement of passing droplets is needed for achieving fully automated systems and ultimately scalability. Existing droplet monitoring technologies are either difficult to implement by non-experts or require complex experimentation setups. Moreover, commercially available monitoring equipment is expensive and therefore limited to a few laboratories worldwide. In this work, we validated for the first time an easy-to-use, open-source Bonsai visual programming language to accurately measure in real-time droplets generated in a microfluidic device. With this method, droplets are found and characterized from bright-field images with high processing speed. We used off-the-shelf components to achieve an optical system that allows sensitive image-based, label-free, and cost-effective monitoring. As a test of its use we present the results, in terms of droplet radius, circulation speed and production frequency, of our method and compared its performance with that of the widely-used ImageJ software. Moreover, we show that similar results are obtained regardless of the degree of expertise. Finally, our goal is to provide a robust, simple to integrate, and user-friendly tool for monitoring droplets, capable of helping researchers to get started in the laboratory immediately, even without programming experience, enabling analysis and reporting of droplet data in real-time and closed-loop experiments.publishersversionepub_ahead_of_prin

    Global Analyses Of Ceratocystis Cacaofunesta Mitochondria: From Genome To Proteome.

    Get PDF
    The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated omics approaches. The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.149
    corecore