4,622 research outputs found

    Impact of end effector technology on telemanipulation performance

    Get PDF
    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system

    Nonmesonic decay of the Lambda-hyperon in hypernuclei produced by p+Au collisions

    Full text link
    The lifetime of the Lambda-hyperon for the nonmesonic decay Lambda N ---> N N has been determined by a measurement at COSY Juelich of the delayed fission of heavy hypernuclei produced in proton - Au collisions at T_p=1.9 GeV. It is found that heavy hypernuclei with mass numbers A= 180 +- 5 and atomic numbers Z= 74 +-2 fission with a lifetime 130ps +- 13ps (stat.) +- 15ps (syst.) . This value together with the results obtained for other heavy hypernuclei in previous investigations indicates (on the confidence level of 0.9) a violation of the phenomenological Delta I = 1/2 rule for Lambda N ---> NN transitions as known from the weak mesonic decays of kaons and hyperons. PACS: {13.30.-a}{Decays of baryons} {13.75.Ev}{Hyperon-nucleon interaction} {21.80}{Hypernuclei} {25.80.Pw}{Hyperon-induced reactions}Comment: 3 pages, 2 Postscript figures, uses svepj.clo and svjour.cls. submitted to European Physical Journal

    The lifetime of the Lambda hyperon bound in hypernuclei produced by p+U collisions

    Full text link
    The nonmesonic decay of the Lambda hyperon has been investigated by observation of delayed fission from heavy hypernuclei produced in proton-U collisions at Tp = 1.9 GeV. The lifetime of heavy hypernuclei with masses A approximately 220 obtained in the present work, i.e. tau = 138 +- 6 (stat.) +-m 17 (syst.) ps, is the most accurate result for heavy hypernuclei produced in proton and antiproton induced collisions on a U target so far. PACS: {13.30.-a}{Decays of baryons} {13.75.Ev}{Hyperon-nucleon interaction} {21.80}{Hypernuclei} {25.80.Pw}{Hyperon-induced reactions}Comment: 16 pages, 4 Postscript figures, uses file appolb.cls (included), submitted to Acta Physica Polonica B, http://th-www.if.uj.edu.pl/act

    Nonmesonic decay of the Lambda hyperon in nuclear matter - implications on the weak Lambda-N interaction

    Full text link
    The lifetime of the Lambda hyperon in heavy hypernuclei as measured by the COSY-13 Collaboration in proton - Au, Bi and U collisions has been analysed to yield tau(Lambda) = (145 +- 11) ps. This value for tau(Lambda) is compatible with the lifetime extracted from antiproton annihilation on Bi and U targets, however, much more accurate. We find that the dependence of the lifetime tau(Lambda) on the mass of hypernuclei indicates a violation of the phenomenological Delta I = 1/2 rule known from the weak mesonic decays of strange particles. PACS: {13.30.-a}{Decays of baryons} {13.75.Ev}{Hyperon-nucleon interaction} {21.80}{Hypernuclei} {25.80.Pw}{Hyperon-induced reactions}Comment: 21 pages, 11 PostScript figures, EPJA in prin

    Inheritance and mapping of stem rust resistance of wheat line PI 410966

    Get PDF
    Stem rust caused by Puccinia graminis f. sp tritici of wheat (Triticum aestivum L.) is one of the most destructive cereal diseases globally. Concern about the disease has increased since 1999 with the discovery in Uganda of a new virulent race of Pgt, designated as race TTKSK (also known as Ug99). The objectives of this experiment were to characterize the resistance and to determine the chromosomal location of the stem rust resistance in the spring wheat line PI 410966. A mapping population was developed from a cross between PI 410966 and a susceptible wheat line OK3040. An inoculation test with isolate 04KEN156/04 of race TTKSK was conducted at the USDA-ARS Cereal Disease Laboratory in the F6:7 generation, and the F6:7 phenotypic data were used to genetically map the resistance gene to the centromeric region on chromosome 2BS. The single locus explained the observed F6:7 resistant and susceptible scores. The location of the gene and molecular marker banding profiles of the diagnostic markers suggest that the stem rust resistance gene in PI 410966 could be a new gene, an allele of Sr36, or Sr36

    An integral model based on slender body theory, with applications to curved rigid fibers

    Full text link
    We propose a novel integral model describing the motion of curved slender fibers in viscous flow, and develop a numerical method for simulating dynamics of rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on (singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral operator is provably negative definite in a non-physical idealized geometry, as expected from PDE theory. This is numerically verified in physically relevant geometries. We propose a convergent numerical method for solving the integral equation and discuss its convergence and stability. The accuracy of the model and method is verified against known models for ellipsoids. Finally, a fast algorithm for computing dynamics of rigid fibers with complex geometries is developed

    Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet

    Get PDF
    The spin-lattice relaxation rate T11T_{1}^{-1} and NMR spectra of 1^1H in single crystal molecular magnets of Fe8 have been measured down to 15 mK. The relaxation rate T11T_1^{-1} shows a strong temperature dependence down to 400 mK. The relaxation is well explained in terms of the thermal transition of the iron state between the discreet energy levels of the total spin S=10. The relaxation time T1T_1 becomes temperature independent below 300 mK and is longer than 100 s. In this temperature region stepwise recovery of the 1^1H-NMR signal after saturation was observed depending on the return field of the sweep field. This phenomenon is attributed to resonant quantum tunneling at the fields where levels cross and is discussed in terms of the Landau-Zener transition.Comment: 13 pages, 5 figure
    corecore