45 research outputs found

    Chemotherapy-Induced Tumor Cell Death at the Crossroads Between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia

    Get PDF
    In solid tumors and hematological malignancies, including acute myeloid leukemia, some chemotherapeutic agents, such as anthracyclines, have proven to activate an immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes. This process, known as immunogenic cell death, is characterized by a variety of tumor cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1 proteins. However, in addition to with immunogenic cell death, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1, which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells. The aim of this review is to summarize the current knowledge about the mechanisms and effects by which chemotherapy results in both activation and suppression of anti-tumor immune response. Indeed, a better understanding of the whole process underlying chemotherapy-induced alterations of the immunological tumor microenvironment has important clinical implications to fully exploit the immunogenic potential of anti-leukemia agents and tune their application

    Sunitinib Exerts In Vitro Immunomodulatory Activity on Sarcomas via Dendritic Cells and Synergizes With PD-1 Blockade

    Get PDF
    Background: High-grade sarcomas are a heterogeneous group of aggressive tumors arising in bone and soft tissues. After relapse, treatment options are limited. The multi-targeted receptor tyrosine kinase inhibitors (TKIs) sunitinib and inhibitor of PD-1 (anti-PD-1) nivolumab have shown antitumor activity in selected subtypes. In this study, we examine the role of TKIs and PD-1 based therapy in in vitro cocultures of sarcoma. Methods: The human osteosarcoma (SaOS-2) and synovial sarcoma (SYO-1) cell lines were treated with sunitinib. After cell death and proliferation assessment, expression of PD-L1 was analyzed by flow cytometry. Sunitinib-treated sarcoma cells were cocultured with dendritic cells (DCs), and the phenotype of mature DCs was determined by flow cytometry. Mature DCs were cultured with autologous T cells. PD-1 expression on T cells, their proliferation, T regulatory cell (Tregs) induction and IFN-γ production, before and after nivolumab exposure, were analyzed. Results: Along with its anti-proliferative and direct pro-apoptotic effect on sarcoma cell lines, sunitinib prompted PD-L1 upregulation on sarcoma cells. Interestingly, sunitinib-treated sarcoma cells drive DCs to full maturation and increase their capacity to induce sarcoma-reactive T cells to produce IFN-γ. Conversely, no effect on T cell proliferation and T cell subpopulation composition was observed. Moreover, both bone and synovial sarcoma cell lines induced Tregs through DCs but sunitinib treatment completely abrogated Treg induction. Finally, sarcoma cell lines induced PD-1 upregulation on both effector T cells and Tregs when loaded into DCs, providing a rationale for using PD-1 blockade. Indeed, PD-1 blockade by nivolumab synergized with sunitinib in inducing IFN-γ-producing effector T cells. Conclusions: Taken together, our in vitro data indicate that the treatment of sarcoma cells with sunitinib can exert significant changes on immune cell subsets toward immune activation, leading to DC-based cross-priming of IFN-γ-producing effector T cells and reduced Treg induction. PD-1 blockade with nivolumab has a synergistic effect with sunitinib, supporting the use of TKI and anti-PD-1 approach in sarcomas, and perhaps in other cancers. DC-targeted drugs, including toll-like receptor 3 inhibitors and CD47 inhibitors, are under development and our preclinical model might help to better design their clinical application

    Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters

    Get PDF
    Recently, many reports were published supporting the clinical use of adoptivelytransferred natural killer (NK) cells as a therapeutic tool against cancer, including acutemyeloid leukemia (AML). Our group demonstrated promising clinical response usingadoptive immunotherapy with donor-derived alloreactive KIR-ligand-mismatched NK cellsin AML patients. Moreover, the antileukemic effect was correlated with the dose of infusedalloreactive NK cells (“functional NK cell dose”). Herein, we update the results of ourprevious study on a cohort of adult AML patients (median age at enrollment 64) infirstmorphological complete remission (CR), not eligible for allogeneic stem celltransplantation. After an extended median follow-up of 55.5 months, 8/16 evaluablepatients (50%) are still off-therapy and alive disease-free. Overall survival (OS) and disease-free survival (DFS) are related with the dose of infused alloreactive NK cells (≥2×105/kg

    Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters

    Get PDF
    open26noRecently, many reports were published supporting the clinical use of adoptively transferred natural killer (NK) cells as a therapeutic tool against cancer, including acute myeloid leukemia (AML). Our group demonstrated promising clinical response using adoptive immunotherapy with donor-derived alloreactive KIR-ligand-mismatched NK cells in AML patients. Moreover, the antileukemic effect was correlated with the dose of infused alloreactive NK cells (“functional NK cell dose”). Herein, we update the results of our previous study on a cohort of adult AML patients (median age at enrollment 64) in first morphological complete remission (CR), not eligible for allogeneic stem cell transplantation. After an extended median follow-up of 55.5 months, 8/16 evaluable patients (50%) are still off-therapy and alive disease-free. Overall survival (OS) and disease-free survival (DFS) are related with the dose of infused alloreactive NK cells (≥2 × 105/kg).openParisi S.; Ruggeri L.; Dan E.; Rizzi S.; Sinigaglia B.; Ocadlikova D.; Bontadini A.; Giudice V.; Urbani E.; Ciardelli S.; Sartor C.; Cristiano G.; Nanni J.; Zannoni L.; Chirumbolo G.; Arpinati M.; Lewis R.E.; Bonifazi F.; Marconi G.; Martinelli G.; Papayannidis C.; Paolini S.; Velardi A.; Cavo M.; Lemoli R.M.; Curti A.Parisi, S.; Ruggeri, L.; Dan, E.; Rizzi, S.; Sinigaglia, B.; Ocadlikova, D.; Bontadini, A.; Giudice, V.; Urbani, E.; Ciardelli, S.; Sartor, C.; Cristiano, G.; Nanni, J.; Zannoni, L.; Chirumbolo, G.; Arpinati, M.; Lewis, R. E.; Bonifazi, F.; Marconi, G.; Martinelli, G.; Papayannidis, C.; Paolini, S.; Velardi, A.; Cavo, M.; Lemoli, R. M.; Curti, A

    Cellular immunotherapy using dendritic cells against multiple myeloma

    Get PDF
    Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4+ T cells and CD8+ cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes

    Humoral and Cellular CMV Responses in Healthy Donors; Identification of a Frequent Population of CMV-Specific, CD4+ T Cells in Seronegative Donors

    Get PDF
    CMV status is an important risk factor in immune compromised patients. In hematopoeitic cell transplantations (HCT), both donor and recipient are tested routinely for CMV status by serological assays; however, one might argue that it might also be of relevance to examine CMV status by cellular (i.e., T lymphocyte) assays. Here, we have analyzed the CMV status of 100 healthy blood bank donors using both serology and cellular assays. About half (56%) were found to be CMV seropositive, and they all mounted strong CD8+ and/or moderate CD4+ T cell responses ex vivo against the immunodominant CMV protein, pp65. Of the 44 seronegative donors, only five (11%) mounted ex vivo T cell responses; surprisingly, 33 (75%) mounted strong CD4+ T cell responses after a brief in vitro peptide stimulation culture. This may have significant implications for the analysis and selection of HCT donors

    A screening of antineoplastic drugs for acute myeloid leukemia reveals contrasting immunogenic effects of etoposide and fludarabine

    No full text
    Background: Recent evidence demonstrated that the treatment of acute myeloid leukemia (AML) cells with daunorubicin (DNR) but not cytarabine (Ara-C) results in immunogenic cell death (ICD). In the clinical setting, chemotherapy including anthracyclines and Ara-C remains a gold standard for AML treatment. In the last decade, etoposide (Eto) and fludarabine (Flu) have been added to the standard treatment for AML to potentiate its therapeutic effect and have been tested in many trials. Very little data are available about the ability of these drugs to induce ICD. Methods: AML cells were treated with all four drugs. Calreticulin and heat shock protein 70/90 translocation, non-histone chromatin-binding protein high mobility group box 1 and adenosine triphosphate release were evaluated. The treated cells were pulsed into dendritic cells (DCs) and used for in vitro immunological tests. Results: Flu and Ara-C had no capacity to induce ICD-related events. Interestingly, Eto was comparable to DNR in inducing all ICD events, resulting in DC maturation. Moreover, Flu was significantly more potent in inducing suppressive T regulatory cells compared to other drugs. Conclusions: Our results indicate a novel and until now poorly investigated feature of antineoplastic drugs commonly used for AML treatment, based on their different immunogenic potential
    corecore