180 research outputs found
1. Greci ed indigeni nei santuari della Magna Grecia : i casi di Timmari e Garaguso
The paper examines two particular sanctuaries of Basilicata, situated in the hinterland of the greek colonies of Metapontum and Taras, outside the chora of the poleis : Garaguso on the hills overlooking the Cavone-Salandrella river, and Timmari, in the territory north-west of Matera, overlooking the Bradano river. This santuaries are situated in an area which saw intense visitation during the archaic age and presents significant distinctive traits which are very adaptable to a frontier area between Greeks and Natives. The forthcoming study of all the unpublished materials will permit the acquisition of further important data and will have the scope of defining the different models of religious practices in this indigenous santuaries which have characterized the history of this territory in the Archaic Age. An objective of the research regards the definition of the function of the two sanctuaries and the role played by greek and native people attending the cul
Da Taranto alla Mesogaia nord-lucana: le terrecotte architettoniche dell'Anaktonon di Torre di Satriano
Si presentano le terrecotte architettoniche, rinvenute recentemente a Torre di Satriano in relazione ad un edificio identificato come residenza del capo della comunità di età arcaica, proponendo di identificare gli artigiani attivi nell'insediamento indigeno con Greci provenienti da Taranto: se le iscrizioni (numeri ordinali relativi alla messa in opera del tetto), incise sulle terrecotte rimandano alla apoikia spartana, iconografia e stile di fregio e acroteri rimandano alla cultura artigianale laconica
Ricerche archeologiche ad Altojanni (Grottole – MT) e nel suo territorio. Rapporto preliminare
Si presentano i nuovi dati della ricerche effettuate dalla Scuola di Specializzazione in Archeologia di Matera nella Valle del Bradano nel territorio dell'insediamento medievale di Altojanni, portando l'attenzione sulle trasformazioni del paesaggio agrario tra età arcaica e medioev
Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy)
During the excavations carried out in Via di Mercurio (Regio VI, 9, 3) in Pompeii, in 2015, some red, green, black, and brown wall painting fragments were found in the preparatory layer of an ancient pavement which was probably built after the 62 AD earthquake. These fragments, derived from the rubble, were used as coarse aggregate to prepare the mortar for building the pavement. The wall painting fragments are exceptionally well preserved, which is an uncommon occurrence in the city of Pompeii. However, as they were enclosed in the mortar, the wall painting fragments were protected from the high temperatures (probably ranging between 180 ◦C and 380 ◦C) produced by the eruption in 79 AD. The pigmented outer surface of each sample was analyzed using a non-destructive multi-analytical approach, by combining spectrophotometric colorimetry and portable X-ray fluorescence with micro-Raman spectroscopy. The compositional characterization of the samples revealed the presence of cuprorivaite, goethite, and celadonite in the green pigments; hematite in the red pigments; goethite in the brown pigment; and charcoal in the black pigment. These data probably provide us with the most "faithful picture" of the various red, green, black, and brown pigments used in Pompeii prior to the 79 AD eruptio
Elucidation of the chemical role of the pyroclastic materials on the state of conservation of mural paintings from Pompeii
Pyroclastic strata have always been thought to protect the archaeological remains of the Vesuvian area (Italy), hence allowing their conservation throughout the centuries. In this work, we demonstrate that they constitute a potential threat for the conservation state of the mural paintings of Pompeii. The ions that could be leached from them and the ion‐rich groundwater coming from the volcanic soil/rocks may contribute to salt crystallisation. Thermodynamic modelling not only allowed to predict which salts can precipitate from such leaching events but also assisted the identification of additional sources of sulfates and alkali metals to explain the formation of the sulfates identified in efflorescences from the mural paintings of Pompeii. For the future, fluorine, mainly related to a volcanic origin, can be proposed as a marker to monitor the extent of the impact in the mural paintings of Pompeii in situ
New insights to assess the consolidation of stone materials used in built heritage: the case study of ancient graffiti (Tituli Picti) in the archaeological site of Pompeii
Abstract Tituli Picti are an ancient form of urban graffiti very common in the archaeological site of Pompeii (Naples, South—Italy). They are generally made of red pigments applied on walls of Campanian ignimbrite. This paper deals with a scientific investigation aimed to their conservation. This is a challenging task since it requires a multidisciplinary approach that includes restorers, archaeologists and conservation scientists. The study has provided suggestions on the proper way to conserve Tituli Picti over time. In the present work, several specimens of Campanian ignimbrite were painted with red earth pigment; lime and Arabic gum have been used as binders as well. Such painted stones were treated with three consolidants: a suspension of reactive nanoparticles of silica, ethyl silicate and an acrylic microemulsion. Treated and untreated specimens were subjected to thermal aging, artificial solar radiation and induced crystallization decay. It has been assessed the colorimetric variations induced by treatments. Moreover, the micromorphologic features of the consolidated surfaces have been highlighted by means of electron microscope observations. The scotch tape test allowed to compare the superficial cohesion induced by the three used products. According to the results, ethyl silicate seems to represent the most successful product
In situ non-invasive multianalytical methodology to characterize mosaic tesserae from the House of Gilded Cupids, Pompeii
Mosaics, one of the most important decorative artworks in the Roman culture, were usually elaborated with a set of tesserae joined with lime or others binders to form geometric or figurative decorations. The identification of both substrate and colored compounds of the tesserae is a challenge for chemists and archaeologists. In this work, two mosaics present in the House of Gilded Cupids from the Archaeological Park of Pompeii were analyzed in situ by non destructive techniques. Raman and Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopies were used for the molecular and mineralogical characterization, and hand-held energy dispersive X-ray fluorescence (HH-EDXRF) spectrometry and Laser Induced Breakdown Spectroscopy (LIBS) for the elemental analysis. LIBS in-depth analysis was performed to obtain insights about the thickness of the pictorial layer determining that the thickness of red and orange pictorial layers was higher than 140 μm. The results showed that white tesserae were mainly composed by calcite, while local black colored volcanic rocks were used to manufacture black tesserae. Red and orange tesserae were composed by a calcite-based matrix with a hematite pictorial layer applied over it. Orange color was obtained by diluting hematite in the calcite matrix. Principal component analysis (PCA) of the XRF data was performed to observe differences and/or similarities between the analyzed mosaics; the samples projection of the PCA showed clear groupings.Iker Marcaida is grateful to the Basque Government who funded his predoctoral fellowship. This work has been supported by the project MADyLIN (BIA2017‑87063‑P) funded by the Spanish Agency for Research AEI (MINEICO‑FEDER/ UE)
Elucidation of the Chemical Role of the Pyroclastic Materials on the State of Conservation of Mural Paintings from Pompeii
Pyroclastic strata have always been thought to protect the archaeological remains of the Vesuvian area (Italy), hence allowing their conservation throughout the centuries. In this work, we demonstrate that they constitute a potential threat for the conservation state of the mural paintings of Pompeii. The ions that could be leached from them and the ion‐rich groundwater coming from the volcanic soil/rocks, may contribute to salt crystallisation. Thermodynamic modelling not only allowed to predict which salts can precipitate from such leaching events, but also assisted the identification of additional sources of sulfates and alkali metals, to explain the formation of the sulfates identified in efflorescences from the mural paintings of Pompeii. For the future, fluorine, mainly related to a volcanic origin, can be proposed as a marker to monitor in situ the extent of the impact in the mural paintings of Pompeii.The research leading to these results has received funding from “la Caixa” Foundation (Silvia Pérez-Diez, ID 100010434, Fellowship code LCF/BQ/ES18/11670017). This work has been supported by the projects MADyLIN (Ministry of Economy, Industry and Competitiveness from Spain, Grant No. BIA2017‐87063‐P) funded by the Spanish Agency for Research AEI (MINECO-FEDER/UE) and MINECO-17-CTQ2016-77887-C2-1-R
When Red Turns Black: Influence of the 79 AD Volcanic Eruption and Burial Environment on the Blackening/Darkening of Pompeian Cinnabar
It is widely known that the vivid hue of red cinnabar can darken or turn black. Many authors have studied this transformation, but only a few in the context of the archeological site of Pompeii. In this work, the co-occurrence of different degradation patterns associated with Pompeian cinnabar-containing fresco paintings (alone or in combination with red/yellow ocher pigments) exposed to different types of environments (pre- and post-79 AD atmosphere) is reported. Results obtained from the in situ and laboratory multianalytical methodology revealed the existence of diverse transformation products in the Pompeian cinnabar, consistent with the impact of the environment. The effect of hydrogen sulfide and sulfur dioxide emitted during the 79 AD eruption on the cinnabar transformation was also evaluated by comparing the experimental evidence found on paintings exposed and not exposed to the post-79 AD atmosphere. Our results highlight that not all the darkened areas on the Pompeian cinnabar paintings are related to the transformation of the pigment itself, as clear evidence of darkening associated with the presence of manganese and iron oxide formation (rock varnish) on fragments buried before the 79 AD eruption has also been found.The research leading to these results has received funding from “la Caixa” Foundation (Silvia Pérez-Diez, ID 100010434, Fellowship code LCF/BQ/ES18/11670017). A.P.M. is a Serra Húnter fellow. A.P.M’s research was supported by a Beatriu de Pinós postdoctoral grant (2017 BP-A 00046) of the Government of Catalonia’s Secretariat for Universities & Research of the Ministry of Economy and Knowledge. This work has been supported by the project MADyLIN (BIA2017-87063-P) funded by the Spanish Agency for Research AEI (MINECO-FEDER/UE). The authors thank for the funding provided by University of the Basque Country through the Institutionally Sponsored Open Access
- …