158 research outputs found

    Pyridine-Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-Selective Olefin Metathesis

    Get PDF
    Pyridine as a stabilizing donor ligand drastically improves the performance of ruthenium monothiolate catalysts for olefin metathesis in comparison with previous versions based on a stabilizing benzylidene ether ligand. The new pyridine-stabilized ruthenium alkylidenes undergo fast initiation and reach appreciable yields combined with moderate to high Z selectivity in self-metathesis of terminal olefins after only a few minutes at room temperature. Moreover, they can be used with a variety of substrates, including acids, and promote self-metathesis of ω-alkenoic acids. The pyridine-stabilized ruthenium monothiolate catalysts are also efficient at the high substrate dilutions of macrocylic ring-closing metathesis and resist temperatures above 100 °C during catalysis.publishedVersio

    Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami

    Get PDF
    International audienceThe Sumatra, December 26th, 2004, tsunami produced internal gravity waves in the neutral atmosphere and large disturbances in the overlying ionospheric plasma. To corroborate the tsunamigenic hypothesis of these perturbations, we reproduce, with a 3D numerical modeling of the ocean-atmosphere-ionosphere coupling, the tsunami signature in the Total Electron Content (TEC) data measured by the Jason-1 and Topex/Poseidon satellite altimeters. The agreement between the observed and synthetic TEC shows that ionospheric remote sensing can provide new tools for offshore tsunami detection and monitorin

    HF radar detection of infrasonic waves generated in the ionosphere by the 28 March 2005 Sumatra earthquake

    Get PDF
    International audienceSurface waves generated by earthquakes create atmospheric waves detectable in the ionosphere using radio waves techniques: i.e., HF Doppler sounding, GPS and altimeter TEC measurements, as well as radar measurements. We present observations performed with the over-the-horizon (OTH) radar NOSTRADAMUS after the very strong earthquake (M=8.6) that occurred in Sumatra on March 28, 2005. An original method based on the analysis of the RTD (Range-Time-Doppler) image is suggested to identify the multi-chromatic ionospheric signature of the Rayleigh wave. The proposed method presents the advantage to preserve the information on the range variation and time evolution, and provides comprehensive results, as well as easy identification of the waves. In essence, a Burg algorithm of order 1 is proposed to compute the Doppler shift of the radar signal, resulting in sensitivity as good as obtained with higher orders. The multi-chromatic observation of the ionospheric signature of Rayleigh wave allows to extrapolate information coherent with the dispersion curve of Rayleigh waves, that is, we observe two components of the Rayleigh waves with estimated group velocities of 3.8 km/s and 3.6 km/s associated to 28 mHz (T~36 s) and 6.1 mHz (T~164 s) waves, respectively. Spectral analysis of the RTD image reveals anyway the presence of several oscillations at frequencies between 3 and 8 mHz clearly associated to the transfer of energy from the solid-Earth to the atmosphere, and nominally described by the normal modes theory for a complete planet with atmosphere. Oscillations at frequencies larger than 8 mHz are also observed in the spectrum but with smaller amplitudes. Particular attention is pointed out to normal modes 0S29 and 0S37 which are strongly involved in the coupling process. As the proposed method is frequency free, it could be used not only for detection of ionospheric perturbations induced by earthquakes, but also by other natural phenomena as well as volcanic explosions and particularly tsunamis, for future oceanic monitoring and tsunami warning systems

    Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    Get PDF
    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1-octene, allyl acetate, and 2-allyloxyethanol. Starting from a moderately selective catalyst, [P(Cy)3](-S-2,4,6-Ph-C6H2)ClRu(==CH-o-OiPrC6H4) (4, Cy = cyclohexyl, iPr = isopropyl), obtained by substituting a chloride of the Hoveyda−Grubbs first-generation catalyst with 2,4,6- triphenylbenzenethiolate, we moved on to replace Cl and PCy3 by chelating, anionic phosphine ligands. Such ligands increase selectivity by limiting rotation around the P−Ru bond and by specifically directing the steric bulk of the phosphine substituents toward the selectivity-inducing thiolate ligand. In particular, DFT calculations predicted that o-(dialkylphosphino)phenolate ligands should improve selectivity and activity compared to 4. The most promising of these compounds (8b), based on the o-(ditert- butylphosphino)phenolate ligand, directs the two P-bonded tert-butyl substituents toward the 2,4,6-triphenylbenzenethiolate and has little steric hindrance trans to the thiolate. This compound metathesizes terminal olefins such as allylbenzene and 1- octene with Z-selectivities above 80% and allylacetate above 90%. Although these phosphine-based ruthenium monothiolate catalysts in general achieve somewhat lower activities and Z-selectivities than their second-generation counterparts, they also offer examples giving less substrate and product isomerization and thus higher yields.publishedVersio

    The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition

    Get PDF
    Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via ÎČ-H elimination. The factors responsible for promoting or inhibiting ÎČ-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits ÎČ-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB CÎČ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting ÎČ-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts.publishedVersio

    Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalysts

    Get PDF
    Bimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure. The present study provides the first detailed mechanistic insights into the steric and electronic factors that govern bimolecular decomposition. Described is a combined experimental and theoretical study that probes decomposition of the key active species, RuCl2(L)(py)(═CH2) 1 (in which L is the N-heterocyclic carbene (NHC) H2IMes, or a CAAC ligand: the latter vary in the NAr group (NMes, N-2,6-Et2C6H3, or N-2-Me,6-iPrC6H3) and the substituents on the quaternary site flanking the carbene carbon (i.e., CMe2 or CMePh)). The transiently stabilized pyridine adducts 1 were isolated by cryogenic synthesis of the metallacyclobutanes, addition of pyridine, and precipitation. All are shown to decompose via second-order kinetics at −10 °C. The most vulnerable CAAC species, however, decompose more than 1000-fold faster than the H2IMes analogue. Computational studies reveal that the key factor underlying accelerated decomposition of the CAAC derivatives is their stronger trans influence, which weakens the Ru−py bond and increases the transient concentration of the 14-electron methylidene species, RuCl2(L)(═CH2) 2. Fast catalyst initiation, a major design goal in olefin metathesis, thus has the negative consequence of accelerating decomposition. Inhibiting bimolecular decomposition offers major opportunities to transform catalyst productivity and utility, and to realize the outstanding promise of olefin metathesis.publishedVersio

    Mesomeric Acceleration Counters Slow Initiation of Ruthenium-CAAC Catalysts for Olefin Metathesis (CAAC = Cyclic (Alkyl)(Amino) Carbene)

    Get PDF
    Ruthenium catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands can attain very high productivities in olefin metathesis, owing to their resistance to unimolecular decomposition. Because the propagating methylidene species RuCl2(CAAC)(═CH2) is extremely susceptible to bimolecular decomposition, however, turnover numbers in the metathesis of terminal olefins are highly sensitive to catalyst concentration, and hence loadings. Understanding how, why, and how rapidly the CAAC complexes partition between the precatalyst and the active species is thus critical. Examined in a dual experimental–computational study are the rates and basis of initiation for phosphine-free catalysts containing the leading CAAC ligand C1Ph, in which a CMePh group α to the carbene carbon helps retard degradation. The Hoveyda-class complex HC1Ph (RuCl2(L)(═CHAr), where L = C1Ph, Ar = C6H3-2-OiPr-5-R; R = H) is compared with its nitro-Grela analogue (nG-C1Ph; R = NO2) and the classic Hoveyda catalyst HII (L = H2IMes; R = H). t-Butyl vinyl ether (tBuVE) was employed as substrate, to probe the reactivity of these catalysts toward olefins of realistic bulk. Initiation is ca. 100× slower for HC1Ph than HII in C6D6, or 44× slower in CDCl3. The rate-limiting step for the CAAC catalyst is cycloaddition; for HII, it is tBuVE binding. Initiation is 10–13× faster for nG-C1Ph than HC1Ph in either solvent. DFT analysis reveals that this rate acceleration originates in an overlooked role of the nitro group. Rather than weakening the Ru–ether bond, as widely presumed, the NO2 group accelerates the ensuing, rate-limiting cycloaddition step. Faster reaction is caused by long-range mesomeric effects that modulate key bond orders and Ru-ligand distances, and thereby reduce the trans effect between the carbene and the trans-bound alkene in the transition state for cycloaddition. Mesomeric acceleration may plausibly be introduced via any of the ligands present, and hence offers a powerful, tunable control element for catalyst design.publishedVersio

    Z-Selective Monothiolate Ruthenium Indenylidene Olefin Metathesis Catalysts

    Get PDF
    Ru-alkylidenes bearing sterically demanding arylthiolate ligands (SAr) constitute one of only two classes of catalyst that are Z-selective in metathesis of 1-alkenes. Of particular interest are complexes bearing pyridine as a stabilizing donor ligand, [RuCl(SAr)(═CHR)(NHC)(py)] (R = phenyl or 2-thienyl, NHC = N-heterocyclic carbene, py = pyridine), which initiate catalysis rapidly and give appreciable yields combined with moderate to high Z-selectivity within minutes at room temperature. Here, we extend this chemistry by synthesizing and testing the first two such complexes (5a and 5b) bearing 3-phenylindenylidene, a ligand known to promote stability in other ruthenium-based olefin metathesis catalysts. The steric pressure resulting from the three bulky ligands (the NHC, the arylthiolate, and the indenylidene) forces the thiolate ligand to position itself trans to the NHC ligand, a configuration different from that of the corresponding alkylidenes. Surprisingly, although this configuration is incompatible with Z-selectivity and slows down pyridine dissociation, the two new complexes initiate readily at room temperature. Although their thermal stability is lower than that of typical indenylidene-bearing catalysts, 5a and 5b are fairly stable in catalysis (TONs up to 2200) and offer up to ca. 80% of the Z-isomer in prototypical metathesis homocoupling reactions. Density functional theory (DFT) calculations confirm the energetic cost of dissociating pyridine from 5a (= M1-Py) to generate 14-electron complex M1. Whereas the latter isomer does not give a metathesis-potent allylbenzene π-complex, it may isomerize to M1-trans and M2, which both form π-complexes in which the olefin is correctly oriented for cycloaddition. The olefin orientation in these complexes is also indicative of Z-selectivity.publishedVersio

    Silica-supported Z-selective Ru olefin metathesis catalysts

    Get PDF
    Under embargo until: 2022-01-17Recently reported thiolate-coordinated ruthenium alkylidene complexes show promise in Z-selective and stereoretentive olefin metathesis reactions. Herein we describe the immobilization of three Ru complexes containing a bulky aryl thiolate on mesostructured silica via surface organometallic chemistry. The applied methodology gives isolated catalytic sites homogeneously distributed on the silica surface. The catalytic results with two model substrates show comparable Z-selectivities to those of the homogeneous counterparts.acceptedVersio
    • 

    corecore