460 research outputs found

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure

    Branch-depth: Generalizing tree-depth of graphs

    Full text link
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 36 pages, 2 figures. Final versio

    Scattered classes of graphs

    Full text link
    For a class C\mathcal C of graphs GG equipped with functions fGf_G defined on subsets of E(G)E(G) or V(G)V(G), we say that C\mathcal{C} is kk-scattered with respect to fGf_G if there exists a constant \ell such that for every graph GCG\in \mathcal C, the domain of fGf_G can be partitioned into subsets of size at most kk so that the union of every collection of the subsets has fGf_G value at most \ell. We present structural characterizations of graph classes that are kk-scattered with respect to several graph connectivity functions. In particular, our theorem for cut-rank functions provides a rough structural characterization of graphs having no mK1,nmK_{1,n} vertex-minor, which allows us to prove that such graphs have bounded linear rank-width.Comment: 42 pages, 5 figures. Adding a new section comparing these concepts with tree-depth, rank-depth, shrub-depth, modular-width, neighborhood diversity, et

    Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width

    Full text link
    We prove that every graph of rank-width kk is a pivot-minor of a graph of tree-width at most 2k2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors of trees and bipartite graphs of linear rank-width at most 1 are precisely pivot-minors of paths.Comment: 16 pages, 7 figure

    Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k

    Get PDF
    International audienceEvery minor-closed class of matroids of bounded branch-width can be characterized by a minimal list of excluded minors, but unlike graphs, this list could be infinite in general. However, for each fixed finite field F\mathbb F, the list contains only finitely many F\mathbb F-representable matroids, due to the well-quasi-ordering of F\mathbb F-representable matroids of bounded branch-width under taking matroid minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive and does not provide any algorithm for computing these F\mathbb F-representable excluded minors in general. We consider the class of matroids of path-width at most kk for fixed kk. We prove that for a finite field F\mathbb F, every F\mathbb F-representable excluded minor for the class of matroids of path-width at most~kk has at most 2FO(k2)2^{|\mathbb{F}|^{O(k^2)}} elements. We can therefore compute, for any integer kk and a fixed finite field F\mathbb F, the set of F\mathbb F-representable excluded minors for the class of matroids of path-width kk, and this gives as a corollary a polynomial-time algorithm for checking whether the path-width of an F\mathbb F-represented matroid is at most kk. We also prove that every excluded pivot-minor for the class of graphs having linear rank-width at most kk has at most 22O(k2)2^{2^{O(k^2)}} vertices, which also results in a similar algorithmic consequence for linear rank-width of graphs

    A Polynomial Kernel for 3-Leaf Power Deletion

    Get PDF
    For a non-negative integer ?, a graph G is an ?-leaf power of a tree T if V(G) is equal to the set of leaves of T, and distinct vertices v and w of G are adjacent if and only if the distance between v and w in T is at most ?. Given a graph G, 3-Leaf Power Deletion asks whether there is a set S ? V(G) of size at most k such that GS is a 3-leaf power of some treeT. We provide a polynomial kernel for this problem. More specifically, we present a polynomial-time algorithm for an input instance (G,k) to output an equivalent instance (G\u27,k\u27) such that k\u27? k and G\u27 has at most O(k^14) vertices
    corecore