25 research outputs found

    Assessment of the Influence of Forest Exploitation on Species Biodiversity in the Russian Far East

    Get PDF
    Deforestation is the primary cause of species's habitat losses and, as a consequence. a decline of the number of individuals of populations and the size of distributions of forest-dwelling animal species takes place. In the Russian Far East recent forest exploitation has affected populations of several vertebrate species, and brought them to the edge of extinction. Current foreign investments in forest enterprises, and thus an expected rapid industrial development of the forest sector in the region, do not give hope for the threatened species survival unless urgent protection measures are taken. In this particular study, assessments of the influence of forest exploitation has been done by studying the development of a couple of so-called key-stone species, namely the Amur tiger and the Amur leopard, the Himalayan Black Bear, and four endangered species of birds and bird communities. A detailed analysis of the species development has been carried out with respect to historical trends in distribution and population size, current status and future trends. main factors of disappearance, relationship to forest practises, and existing and future protection measures Additionally, short assessments of the recent forest management, the scale of current foreign investments in forest enterprises, and an overview of the present biodiversity status and the protected area system in the region have been carried out

    A Postulate for Tiger Recovery: The Case of the Caspian Tiger

    Get PDF
    Recent genetic analysis has shown that the extinct Caspian Tiger (P. t. virgata) and the living Amur Tigers (P. t. altaica) of the Russian Far East are actually taxonomically synonymous and that Caspian and Amur groups historically formed a single population, only becoming separated within the last 200 years by human agency. A major conservation implication of this finding is that tigers of Amur stock might be reintroduced, not only back into the Koreas and China as is now proposed, but also through vast areas of Central Asia where the Caspian tiger once lived. However, under the current tiger conservation framework the 12 “Caspian Tiger States” are not fully involved in conservation planning. Equal recognition as “Tiger Range States” should be given to the countries where the Caspian tiger once lived and their involvement in tiger conservation planning encouraged. Today, preliminary ecological surveys show that some sparsely populated areas of Central Asia preserve natural habitat suitable for tigers. In depth assessments should be completed in these and other areas of the Caspian range to evaluate the possibility of tiger reintroductions. Because tigers are a charismatic umbrella species, both ecologically and politically, reintroduction to these landscapes would provide an effective conservation framework for the protection of many species in addition to tigers. And for today’s Amur Tigers this added range will provide a buffer against further loss of genetic diversity, one which will maintain that diversity in the face of selective pressures that can only be experienced in the wild

    Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations

    Get PDF
    Background: Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results: In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions: The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies

    Conservation Genetics of the Far Eastern Leopard (Panthera pardus orientalis)

    No full text

    Applying Molecular Genetic Tools to the Conservation and Action Plan for the Critically Endangered Far Eastern Leopard (Panthera pardus orientalis)

    No full text
    A role for molecular genetic approaches in conservation of endangered taxa is now commonly recognized. Because conservation genetic analyses provide essential insights on taxonomic status, recent evolutionary history and current health of endangered taxa, they are considered in nearly all conservation programs. Genetic analyses of the critically endangered Far Eastern, or Amur leopard, Panthera pardus orientalis, have been done recently to address all of these questions and develop strategies for survival of the leopard in the wild. The genetic status and implication for conservation management of the Far Eastern leopard subspecies are discussed

    Conservation Genetics of the Far Eastern Leopard (Panthera pardus orientalis)

    No full text
    The Far Eastern or Amur leopard (Panthera pardus orientalis) survives today as a tiny relict population of 25–40 individuals in the Russian Far East. The population descends from a 19th-century northeastern Asian subspecies whose range extended over southeastern Russia, the Korean peninsula, and northeastern China. A molecular genetic survey of nuclear microsatellite and mitochondrial DNA (mtDNA) sequence variation validates subspecies distinctiveness but also reveals a markedly reduced level of genetic variation. The amount of genetic diversity measured is the lowest among leopard subspecies and is comparable to the genetically depleted Florida panther and Asiatic lion populations. When considered in the context of nonphysiological perils that threaten small populations (e.g., chance mortality, poaching, climatic extremes, and infectious disease), the genetic and demographic data indicate a critically diminished wild population under severe threat of extinction. An established captive population of P. p. orientalis displays much higher diversity than the wild population sample, but nearly all captive individuals are derived from a history of genetic admixture with the adjacent Chinese subspecies, P. p. japonensis. The conservation management implications of potential restoration/augmentation of the wild population with immigrants from the captive population are discussed

    Genome-Wide Evolutionary Analysis of Natural History and Adaptation in the World\u27s Tigers

    No full text
    No other species attracts more international resources, public attention, and protracted controversies over its intraspecific taxonomy than the tiger (Panthera tigris) [1, 2]. Today, fewer than 4,000 free-ranging tigers survive, covering only 7% of their historical range, and debates persist over whether they comprise six, five, or two subspecies [3–6]. The lack of consensus over the number of tiger subspecies has partially hindered the global effort to recover the species from the brink of extinction, as both captive breeding and landscape intervention of wild populations increasingly require an explicit delineation of the conservation management units [7]. The recent coalescence to a late Pleistocene bottleneck (circa 110 kya) [5, 8, 9] poses challenges for detecting tiger subspecific morphological traits, suggesting that elucidating intraspecific evolution in the tiger requires analyses at the genomic scale. Here, we present whole-genome sequencing analyses from 32 voucher specimens that resolve six statistically robust monophyletic clades corresponding to extant subspecies, including the recently recognized Malayan tiger (P. tigris jacksoni). The intersubspecies gene flow is very low, corroborating the recognized phylogeographic units. We identified multiple genomic regions that are candidates for identifying the adaptive divergence of subspecies. The body-size-related gene ADH7 appears to have been strongly selected in the Sumatran tiger, perhaps in association with adaptation to the tropical Sunda Islands. The identified genomic signatures provide a solid basis for recognizing appropriate conservation management units in the tiger and can benefit global conservation strategic planning for this charismatic megafauna icon

    Genome-Wide Evolutionary Analysis of Natural History and Adaptation in the World’s Tigers

    No full text
    No other species attracts more international resources, public attention, and protracted controversies over its intraspecific taxonomy than the tiger (Panthera tigris) [1, 2]. Today, fewer than 4,000 free-ranging tigers survive, covering only 7% of their historical range, and debates persist over whether they comprise six, five, or two subspecies [3, 4, 5, 6]. The lack of consensus over the number of tiger subspecies has partially hindered the global effort to recover the species from the brink of extinction, as both captive breeding and landscape intervention of wild populations increasingly require an explicit delineation of the conservation management units [7]. The recent coalescence to a late Pleistocene bottleneck (circa 110 kya) [5, 8, 9] poses challenges for detecting tiger subspecific morphological traits, suggesting that elucidating intraspecific evolution in the tiger requires analyses at the genomic scale. Here, we present whole-genome sequencing analyses from 32 voucher specimens that resolve six statistically robust monophyletic clades corresponding to extant subspecies, including the recently recognized Malayan tiger (P. tigris jacksoni). The intersubspecies gene flow is very low, corroborating the recognized phylogeographic units. We identified multiple genomic regions that are candidates for identifying the adaptive divergence of subspecies. The body-size-related gene ADH7 appears to have been strongly selected in the Sumatran tiger, perhaps in association with adaptation to the tropical Sunda Islands. The identified genomic signatures provide a solid basis for recognizing appropriate conservation management units in the tiger and can benefit global conservation strategic planning for this charismatic megafauna icon
    corecore