201 research outputs found

    Hermetic edge sealing of photovoltaic modules

    Get PDF
    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process

    Large area space solar cell assemblies

    Get PDF
    Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication

    Action Recognition with a Bio--Inspired Feedforward Motion Processing Model: The Richness of Center-Surround Interactions

    Get PDF
    International audienceHere we show that reproducing the functional properties of MT cells with various center--surround interactions enriches motion representation and improves the action recognition performance. To do so, we propose a simplified bio--inspired model of the motion pathway in primates: It is a feedforward model restricted to V1-MT cortical layers, cortical cells cover the visual space with a foveated structure, and more importantly, we reproduce some of the richness of center-surround interactions of MT cells. Interestingly, as observed in neurophysiology, our MT cells not only behave like simple velocity detectors, but also respond to several kinds of motion contrasts. Results show that this diversity of motion representation at the MT level is a major advantage for an action recognition task. Defining motion maps as our feature vectors, we used a standard classification method on the Weizmann database: We obtained an average recognition rate of 98.9%, which is superior to the recent results by Jhuang et al. (2007). These promising results encourage us to further develop bio--inspired models incorporating other brain mechanisms and cortical layers in order to deal with more complex videos

    Stresses and strains on the human fetal skeleton during development

    Get PDF
    Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology

    Validation of OMPS Suomi NPP and OMPS NOAA‐20 Formaldehyde Total Columns With NDACC FTIR Observations

    Get PDF
    We validate formaldehyde (HCHO) vertical column densities (VCDs) from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) instruments onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite for 2012–2020 and National Oceanic and Atmospheric Administration-20 (NOAA-20) satellite for 2018–2020, hereafter referred to as OMPS-NPP and OMPS-N20, with ground-based Fourier-Transform Infrared (FTIR) observations of the Network for the Detection of Atmospheric Composition Change (NDACC). OMPS-NPP/N20 HCHO products reproduce seasonal variability at 24 FTIR sites. Monthly variability of OMPS-NPP/N20 has a very good agreement with FTIR, showing correlation coefficients of 0.83 and 0.88, respectively. OMPS-NPP (N20) biases averaged over all sites are −0.9 (4) ± 3 (6)%. However, at clean sites (with VCDs 4.0 × 1015^{15} molecules cm2^{−2}, negative biases of −15% ± 4% appear for OMPS-NPP, but OMPS-N20 shows smaller bias of 0.5% ± 6% due to its smaller ground pixel footprints. Therefore, smaller satellite footprint sizes are important in distinguishing small-scale plumes. In addition, we discuss a bias correction and provide lower limit for the monthly uncertainty of OMPS-NPP/N20 HCHO products. The total uncertainty for OMPS-NPP (N20) at clean sites is 0.7 (0.8) × 1015^{15} molecules cm2^{−2}, corresponding to a relative uncertainty of 32 (30)%. In the case of HCHO VCDs > 4.0 × 1015^{15} molecules cm2^{−2}, however, the relative uncertainty in HCHO VCDs for OMPS-NPP (N20) decreases to 31 (18)%

    Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Get PDF
    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint

    Attitudes and Practices Among Internists Concerning Genetic Testing

    Get PDF
    Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8 %), followed by Breast/Ovarian Cancer (15.0 %). In the past 6 months, 65 % had counseled patients on genetic issues, 44 % had ordered genetic tests, 38.5 % had referred patients to a genetic counselor or geneticist, and 27.5 % had received ads from commercial labs for genetic testing. Only 4.5 % had tried to hide or disguise genetic information, and <2 % have had patients report genetic discrimination. Only 53.4 % knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7 %) and guidelines for genetic testing (87.1 %). Most felt needs for more training on when to order tests (79 %), and how to counsel patients (82 %), interpret results (77.3 %), and maintain privacy (80.6 %). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p  < .001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p  < .002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p  < .019), counseled patients about genetics, larger practices (p  < .032), fewer African‐American patients (p  < .027), and patients who had reported genetic discrimination (p  < .044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests. These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education

    Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas

    Get PDF
    The GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS) was developed in support of NASA's decadal survey GEO-CAPE geostationary satellite mission. GCAS is an airborne push-broom remote-sensing instrument, consisting of two channels which make hyperspectral measurements in the ultraviolet/visible (optimized for air quality observations) and the visible–near infrared (optimized for ocean color observations). The GCAS instrument participated in its first intensive field campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign in Texas in September 2013. During this campaign, the instrument flew on a King Air B-200 aircraft during 21 flights on 11 days to make air quality observations over Houston, Texas. We present GCAS trace gas retrievals of nitrogen dioxide (NO2) and formaldehyde (CH2O), and compare these results with trace gas columns derived from coincident in situ profile measurements of NO2 and CH2O made by instruments on a P-3B aircraft, and with NO2 observations from ground-based Pandora spectrometers operating in direct-sun and scattered light modes. GCAS tropospheric column measurements correlate well spatially and temporally with columns estimated from the P-3B measurements for both NO2 (r2 = 0.89) and CH2O (r2 = 0.54) and with Pandora direct-sun (r2 = 0.85) and scattered light (r2 = 0.94) observed NO2 columns. Coincident GCAS columns agree in magnitude with NO2 and CH2O P-3B-observed columns to within 10&thinsp;% but are larger than scattered light Pandora tropospheric NO2 columns by 33&thinsp;% and direct-sun Pandora NO2 columns by 50&thinsp;%.</p
    corecore