
Action Recognition with a Bio–Inspired Feedforward

Motion Processing Model: The Richness of

Center-Surround Interactions

Maria-Jose Escobar, Pierre Kornprobst

To cite this version:

Maria-Jose Escobar, Pierre Kornprobst. Action Recognition with a Bio–Inspired Feedforward
Motion Processing Model: The Richness of Center-Surround Interactions. European Confer-
ence on Computer Vision 2008, Oct 2008, Marseille, France. Springer, 5305, pp.186–199, 2008,
Lecture Notes in Computer Science; Computer Vision – ECCV 2008. <10.1007/978-3-540-
88693-8 14>. <inria-00423322>

HAL Id: inria-00423322

https://hal.inria.fr/inria-00423322

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. Here we show that reproducing the functional properties of
MT cells with various center–surround interactions enriches motion rep-
resentation and improves the action recognition performance. To do so,
we propose a simplified bio–inspired model of the motion pathway in
primates: It is a feedforward model restricted to V1-MT cortical layers,
cortical cells cover the visual space with a foveated structure and, more
importantly, we reproduce some of the richness of center-surround inter-
actions of MT cells. Interestingly, as observed in neurophysiology, our
MT cells not only behave like simple velocity detectors, but also respond
to several kinds of motion contrasts. Results show that this diversity
of motion representation at the MT level is a major advantage for an
action recognition task. Defining motion maps as our feature vectors,
we used a standard classification method on the Weizmann database:
We obtained an average recognition rate of 98.9%, which is superior to
the recent results by Jhuang et al. (2007). These promising results en-
courage us to further develop bio–inspired models incorporating other
brain mechanisms and cortical layers in order to deal with more complex
videos.

1 Introduction

Action recognition in real scenes remains a challenging problem in computer
vision. Until recently, most proposed approaches considered simplified sequence
databases and relied on simplified assumptions or heuristics. Some examples of
these kind of approaches are [1–5], where one could find therein other references
and further information.

Motion is the key feature for a wide class of computer vision (CV) approaches:
Existing methods consider different motion representations or characteristics,
such as coarse motion estimation, global motion distribution, local motion fea-
ture detection or spatio-temporal structure learning [6–12]. Following this gen-
eral idea which is to consider motion as an informative cue for action recognition
(AR), we present a bio-inspired model for motion estimation and representation.
Interestingly, it is confirmed that in the visual system the motion pathway is also
very much involved in the AR task [10], but of course other brain areas (e.g.,
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the form pathway) and mechanisms (e.g., top-down attentional mechanisms) are
also involved to analyze complex general scenes.

Among recent bio-inspired approaches for AR, [13] proposed a model for
the visual processing in the dorsal (motion) and ventral (form) pathways. They
validated their model in the AR task using stick figures constructed from real
sequences. More recently, [14] proposed a feedforward architecture, which can
be seen as an extension of [15]. In [14], the authors mapped their model to the
cortical architecture, essentially V1 (with simple and complex cells). The only
clear bio-inspired part is one of the models for S1 units and the pooling aspect.
The use of spatio-temporal chunks seems to be supported also but the authors
never claim any biological relevance for the corresponding subsequent processing
stages (from S2 to C3). The max operator is also controversial and not supported
in neurophysiology because it mainly does not allow feedbacks.

In this article, we follow the same objective as in [14], which is to propose a
bio-inspired model of motion processing for AR in real sequences. Our model
will be a connection-based network, in which a large number of neuron-like
processing units operate in parallel. Each unit neuron will have an ‘activation
level’ membrane potential that represents the strength of a particular feature in
the environment. Here, our main contribution will be to better account for the
visual system properties, and in particular, at MT layer level: We reproduce part
of the variety of center-surround interactions [16, 17]. Then, in order to prove
the relevance of this extended motion description, we will show its benefits on
the AR application, and compare our results with the ones obtained by [14].

This article presents the model described in Fig. 1 and it is organized as fol-
lows. Section 2 presents the core of the approach which is a biologically-inspired
model of motion estimation, based on a feedforward architecture. As we previ-
ously mentioned, the aim of this article is to show how a bio-inspired model can
be used in a real application such as AR. Note that we also studied some low-level
properties of the model concerning motion processing [18] but those studies are
out of the scope of this article. The first stage (Section 2.1) is the local motion
extraction corresponding to the V1 layer, with a discrete foveated organization.
The output of this layer is fed to the MT layer (Section 2.2), which is composed
of a set of neurons whose dynamics are defined by a conductance-based neuron
model. We define the connectivity between V1 and MT layers according to neu-
rophysiology, which defines the center-surround interactions of a MT neuron.
The output of the MT layer is a set of neuron membrane potentials, whose val-
ues indicate the presence of a certain velocity or contrasts of velocities. Then,
in Section 3, we consider the problem of AR based on the MT layer activity.
In this section we also present the experimental protocol, some validations and
a comparison with the approach presented by [14]. Interestingly, we show how
the variety of surround-interactions in MT cells found in physiology allows the
improvement of the recognition performances. We conclude in Section 4.
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Fig. 1. Block diagram showing the different steps of our approach from the input
image sequence as stimulus until the motion map encoding the motion pattern. (a)
We use a real video sequence as input, the input sequences are preprocessed in order
to have contrast normalization and centered moving stimuli. To compute the motion

map representing the input image we consider a sliding temporal window of length ∆t.
(b) Directional-selectivity filters are applied over each frame of the input sequence in
a log-polar distribution grid obtaining the activity of each V1 cell. (c) V1 outputs feed
the MT cells which integrate the information in space and time. (d) The motion map

is constructed calculating the mean activation of MT cells inside the sliding temporal
window. The motion map has a length of NL × Nc elements, where NL is the number
of MT layers of cells and Nc is the number of MT cells per layer. This motion map

characterizes and codes the action stimulus.
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2 Bio–Inspired Motion Analysis Model

Several bio-inspired motion processing models have been proposed in the lit-
erature [19–23], those models were validated considering certain properties of
primate visual systems, but none of them has been tested in a real application
such as AR. More complex motion processing models combining not only motion
information but also connections from different brain areas can be found in e.g.
[24, 25].

2.1 V1 Layer: Local Motion Detectors

Our V1 model is defined by a bank of energy motion detectors as a local motion
estimation. The processing is done through energy filters which is a reliable and
biologically plausible method for motion information analysis [26]. Each energy
motion detector will emulate a complex cell, which is formed by a non-linear
combination of V1 simple cells (see [27] for V1 cells classification). Note that the
complex cells will be tuned for the direction of motion θ (and a range of speeds).

Simple Cells are characterized by linear receptive fields where the neuron re-
sponse is a weighted linear combination of the input stimulus inside its receptive
field. By combining two simple cells in a linear manner it is possible to get
direction-selective neurons.

The direction-selectivity (DS) refers to the property of a neuron to respond to
the direction of the motion of a stimulus. The way to model this selectivity is to
obtain receptive fields oriented in space and time (Fig. 1 (b.1)). Let us consider
two spatio-temporal oriented simple cells, F a

θ,f and F b
θ,f , spatially oriented in

the direction θ, and spatio-temporal frequency oriented to f = (ξ̄, ω̄), where ξ̄
and ω̄ are the spatial and temporal maximal responses, respectively:

F a
θ,f (x, y, t) = F odd

θ (x, y)Hfast(t) − F even
θ (x, y)Hslow(t),

F b
θ,f (x, y, t) = F odd

θ (x, y)Hslow(t) + F even
θ (x, y)Hfast(t). (1)

The spatial parts F odd
θ (x, y) and F even

θ (x, y) of each conforming simple cell are
formed using the first and second derivative of a Gabor function spatially ori-
ented in θ. The temporal contributions Hfast(t) and Hslow(t) are defined by:

Hfast(t) = T3,τ (t) − T5,τ (t), and Hslow(t) = T5,τ (t) − T7,τ (t), (2)

where Tη,τ (t) is a Gamma function defined by Tη,τ (t) = tη

τη+1η!
exp

(

− t
τ

)

, which
models the series of synaptic and cellular delays in signal transmission, from
retinal photoreceptors to V1 afferents serving as a plausible approximation of
biological findings [28].

Remark that the causality of Hfast(t) and Hslow(t) generates a more realistic
model than the one proposed by [22] (see also [14]), where the Gaussian proposed
as temporal profile is non-causal and inconsistent with V1 physiology.
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The frequency analysis is required to a right design of our filter bank. For a
given speed, the filter covers a specified region of the spatio-temporal frequency
domain. The quotient between the highest temporal frequency activation (ω̄)
and the highest spatial frequency (ξ̄) is the speed of the filter. So, the filter will
be able to detect the motion for a stimulus whose spatial frequency lies inside
the energy spectrum of the filter. To pave all the space in a homogeneous way, it
is necessary to take more than one filter for the same spatio-temporal frequency
orientation (Fig. 1 (b.2)).

Complex Cells are also direction-selective neurons, however they include other
characteristics that cannot be explained by a linear combination of the input
stimulus. The complex cell property that we want to keep in this model is the
invariance to contrast polarity.

Based on [26], we define the ith V1 complex cell, located at xi = (xi, yi),
with spatial orientation θi and spatio-temporal orientation fi = (ξ̄i, ω̄i) as

Cxi,θi,fi
(t) =

[(

F a
θi,fi

∗ I
)

(xi, t)
]2

+
[(

F b
θi,fi

∗ I
)

(xi, t)
]2

, (3)

where the symbol ∗ represents the spatio-temporal convolution between the sim-
ple cells defined in (1) and the input sequence I(x, t). With this definition, the
cell response is independent of stimulus contrast sign and constant in time for a
drifting grating as input stimulus.

Finally, it is well known in biology that the V1 output shows several non-
linearities due to: response saturation, response rectification, or contrast gain
control [29]. In order to obtain a nonlinear saturation in the V1 response, the
V1 output is passed through a sigmoid function S(·), where the respective pa-
rameters were tuned to have a suitable response in the case of drifting gratings
as inputs. So, finally the V1 output will be given by:

rV 1

i = S (Cxi,θi,fi
(t)) . (4)

2.2 MT Layer: Higher Order Motion Analysis

Modeling Dynamics of MT Neurons: In this article, the dynamics of the
MT neurons are modeled by a simplified conductance-based neuron (without
input currents) [30]. Considering a MT neuron i, its membrane potential uMT

i (t)
evolves in time according to the conductance-driven equation:

τ
duMT

i (t)

dt
= Gexc

i (t)
(

Eexc − uMT
i (t)

)

+ Ginh
i (t − δ)

(

Einh − uMT
i (t)

)

+ gL
(

EL − uMT
i (t)

)

, (5)

where Eexc, Einh and EL = 0 are constant which typical values of 70mV, -10mV
and 0mV, respectively. According to (5), uMT

i (t) will belong to the interval
[

Einh, Eexc
]

and it will be driven by several influences. The first term refers
to input pre-synaptic neurons and it will push the membrane potential uMT

i (t)
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towards Eexc, with a strength defined by Gexc
i (t). Similarly, the second term

also coming from pre-synaptic neurons will drive uMT
i (t) towards Einh with a

strength Ginh
i (t). Finally, the last term will drive uMT

i (t) towards the resting
potential EL with a constant strength given by gL. The constant δ, typically
30ms, is the delay associated to the inhibitory effect.

The MT neuron i is a part of a neural network where the input conductances
Gexc

i (t) and Ginh
i (t) are obtained by pooling the activity of all the pre-synaptic

neurons connected to it (Fig. 1). Each MT cell has a receptive field built from
the convergence of pre-synaptic afferent V1 complex cells (Fig. 1 (c.1)). The
excitatory inputs forming Gexc

i (t) are related with the activation of the classical
receptive field (CRF) of the MT cell; whereas Ginh

i (t) afferents are the cells
forming the surround interactions that could modulate or not the response of
the CRF [16, 17] (Fig. 1(c.2)). The surround does not elicit responses by itself,
it needs the CRF activation to be considered. According to this, the total input
conductances Gexc

i (t) and Ginh
i (t) of the post-synaptic neuron i are defined by

Gexc
i (t) = max

(

0,
∑

j∈Ωi

wijr
V 1

j −
∑

j∈Ω′

i

wijr
V 1

j

)

, Ginh
i (t) =

∑

j∈Φi

wijr
V 1

j , (6)

where Ωi = {j ∈ CRF | ϕij < π/2}, Ω′
i = {j ∈ CRF | ϕij > π/2} and

Φi = {j ∈ Surround | ϕij < π/2}, and where the connection weight wij is the
efficacy of the synapse from neuron j to neuron i, which is proportional to the
angle ϕij between the two preferred motion direction-selectivity of the V1 and
MT cell. It is important to remark that the values of the conductances will be
always greater or equal to zero, and their positive or negative contribution to
uMT

i (t) is due to the values of Eexc and Einh.

The connection weights wij will be given by

wij = kcwcs(xi − xj) cos(ϕij), 0 ≤ ϕij ≤ π, (7)

where kc is an amplification factor, ϕij is the absolute angle between the pre-
ferred cell direction of the MT cell i and the preferred cell direction of the V1 cell
j. The weight wcs(·) is associated to the distance between the MT cell positioned
at xi = (xi, yi) and the V1 cell positioned at xj = (xj , yj), but also depends on
the CRF or surround associated to the MT cell.

Remark. Many studies on MT focused on motion direction selectivity (DS), but
very few on speed selectivity (see, e.g., [31–33]), showing that speed coding relies
on complex and unclear mechanisms. Based on this, here we only considered the
motion direction and not the motion speed, as can be seen in (6): Our MT cells
pool V1 cells just considering their motion DS, and not their spatio-temporal
tuning. However, note that it is also possible to pool differently V1 cells in order
to extract some speed information, as proposed for example in [22, 23, 34]. As a
result, one could obtain a velocity field qualitatively similar to an optical flow
(i.e., one velocity per position).
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Modeling the Richness of Surround Modulations: The activation of a MT
neuron inside its CRF can be modulated by the activation of a surround area [16],
which is usually ignored in most MT-like models. In most cases this modulation
is inhibitory, but Huang et al. [35] showed that this interaction, depending on
the input stimulus, can be also integrative. The direction tuning of the surround
compared with the center tends to be either the same or opposite, but rarely
orthogonal.

Half of MT neurons have asymmetric receptive fields introducing anisotropies
in the processing of the spatial information [16]. The neurons with asymmetric
receptive fields seem to be involved in the encoding of important surfaces fea-
tures, such as slant and tilt or curvature. Their geometry is the main responsible
of the direction tuning of the MT cell and it changes along time.

Considering this, we included four types of MT cells (Fig. 2): One basic type
of cell just only activated by its CRF, and three other types with inhibitory
surrounds. We claim that inhibitory surrounds contain key information about
the motion characterization (such as motion contrasts), as we will illustrate in
Section 3. The tuning direction of the surround is always the same as the CRFs,
but their spatial geometry changes, from symmetric to asymmetric-unilateral
and asymmetric-bilateral surround interactions. It is important to mention that
this approach is a coarse approximation of the real receptive field shapes.

Fig. 2. MT center-surround interactions modeled in our approach. The classical recep-
tive field CRF (a) is modeled with a Gaussian. All the surrounds from (b) to (d) are also
modeled by Gaussians. In (b) the surround is symmetric. The two groups of cells with
asymmetric surrounds are represented in (c) and (d). (c) has a bilateral asymmetric
surround and (d) is a unilateral asymmetric surround. There is an important presence
of anisotropic surround interactions in MT cells: In [16, 17], the authors showed that
within the MT cells with surround suppression, the configuration (b) is present only
in the 25% of the cells, while (c) and (d) cover the resting percentage with a presence
of 50% and 25%, respectively.

3 Action Recognition Based on MT Activity

3.1 Describing Motion Activity by a Motion Map

In this section, we use a standard supervised classification method which has
no biological inspiration. To do this, one needs to define the correspondence
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between the input space (here the space of sequences) and a feature space, but
also a notion of distance between feature vectors. We considered the simpler
case of supervised classification which means that for some inputs, the class is
known (training set). Then, considering a new sequence to be analyzed, we will
estimate the corresponding feature vector and find the best class with a classifier.
Concerning our problem, we define below feature vectors as motion maps, which
represent averaged MT cells activity in a temporal window.

Motion Map as a Feature Vector: At time t, given a video stream I(x, t)
between [t−∆t, t], we define the feature vector (from now on called motion map,
see Fig. 1(c)) as the vector which represents the average membrane potential of
the MT neurons in a temporal window [t −△t, t]:

HI(t,△t) =
{

γI
j (t,△t)

}

j=1,...,Nl×Nc
, (8)

with γI
j (t,△t) = 1

∆t

∫ t

t−△t
uMT

j (s)ds, and where Nl is the number of MT layers
and Nc is the number of MT cells per layer.

The motion map defined in (8) is invariant to the sequence length and its
starting point (for ∆t high enough depending on the scene). It is also includes
information regarding the temporal evolution of the activation of MT cells, re-
specting the causality in the order of events. The use of a sliding window allows
us to include motion changes inside the sequence.

Definition of a Distance Measure: We propose a measure discrimination to
evaluate the similarities between two motion maps HI(t,△t) and HJ(t′,△t′),
defined by

D(HI(t,△t),HJ(t′,△t′)) =
1

Nl Nc

Nl Nc
∑

l=1

(γI
l (t,△t) − γJ

l (t′,△t′))2

γJ
l (t,△t) + γJ

l (t′,△t′)
. (9)

This measure refers to the triangular discrimination introduced by [36]. Other
measures derived from statistics, such as Kullback-Leiber (KL) could also be
used. The experiments done using, e.g., the KL measure showed no significant
improvements. Note that (9) and the motion representation (8) can be seen as
an extension of [37].

3.2 Experiments

Implementation Details: We considered luminosity and contrast normalized
videos of size 210×210 pixels, centered on the action to recognize. Given V1
cells modeled by (3), we consider 9 layers of V1 cells. Each layer is built with V1
cells tuned with the same spatio-temporal frequency and 8 different orientations.
The 9 layers of V1 cells are distributed in the frequency space in order to tile
the whole space of interest (maximal spatial frequency of 0.5 pixels/sec and a
maximal temporal frequency of 12 cycles/sec). The centers of the receptive fields
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are distributed according to a radial log-polar scheme with a foveal uniform zone.
The limit between the two regions is given by the radius of the V1 fovea R0 (80
pixels). The cells with an eccentricity less than R0 have an homogeneous density
and receptive fields size. The cells with an eccentricity greater than R0 have a
density and a receptive field size depending on its eccentricity, giving a total of
4473 cells per layer.

The MT cells are also distributed in a log-polar architecture, but in this case
R0 is 40 pixels giving a total of 144 cells per layer. Different layers of MT cells
conform our model. Four different surround interactions were used in the MT
construction (see Fig. 2). Each layer, with a certain surround interaction, has 8
different directions.

Experimental Protocol: In order to evaluate the performance of our algo-
rithm, we used the Weizmann Database1: This database contains 9 different
samples of different people doing 9 actions: bending (bend), jumping jack (jack),
jumping forward on two legs (jump), jumping in place on two legs (pjump), run-
ning (run), galloping sideways (side), walking (walk), waving one hand (wave1 )
and waving two hands (wave2 ). The number of frames per sequence is variable
and depends on the action.

We selected the actions of 4 or 6 (as in [14]) random subjects as training set
(total of 36 or 64 sequences, respectively) and use the remaining 5 or 3 subjects
for the test set (45 or 27 sequences, respectively). All the motion maps of the
training set were obtained and stored in a data container. We used a RAW
classifier2: When a new input sequence belonging to the test set is presented
to the system, the motion map is calculated (with ∆t covering here all the
sequence) and it is compared using (9) to all motion maps stored in the training
set. The class of the sequence with the shortest distance is assigned as the match
class. The experiments were done considering every possible selection of 4 or
6 subjects, giving a total of 126 or 84 experiments. As output we obtained
histograms showing the frequency of the recognition error rates.

Results: In order to quantify the influence of the information coded by center-
surround interactions, we did the experiments with the different configurations
shown in Fig. 2. The cells were combined in order to create three different motion
maps: just considering the CRF, CRF plus the isotropic surround interaction,
and finally considering all the cells described in Fig. 2, i.e., with isotropic and
anisotropic surround interactions. Results are summarized in the histograms
shown in Fig. 3. Results show that gL > 0 significantly improves the performance
of our system, mainly because the constant leak term attracts the membrane
potential of the cell to its resting value (EL = 0), avoiding possible saturation.
It is also important to remark that in the case gL = 0, the effect of inhibitory

1 http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
2 Note that we repeated the experiments with a standard SVM classifier but we did

not get significant improvements in the recognition performance.
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surrounds (either isotropic or anisotropic) is stronger than the case of gL = 0.25.
The explanation is that the inhibitory surround is the only mechanism to reduce
the activation of the cell. Maybe this effect can be compensated in the case of
gL = 0.25 by adding more relevance to the response of the cells with inhibitory
surround. Remark that the results have a strong variability and so that the
recognition performance highly depends on the sequences used to define the
training set.

gL = 0 gL = 0.25

TS = 4

TS = 6

Fig. 3. Recognition error rate obtained for Weizmann database using the four different
cells described in Fig. 2. We took all the combinations possibles considering 4 or 6
subjects in the training set (TS). For both cases, we ran the experiments with gL = 0
and gL = 0.25, and three surround-interactions: just CRF (black bars), CRF plus
isotropic surround suppression (gray bars) and CRF plus isotropic and anisotropic
surround suppression (red bars).

In the case where 6 random subjects were taken to construct the training set,
we compared our results with [14]. As previously mentioned, we estimated the
performance of our approach based on all the possible combinations (84), and
not only on 5 random trials (as in [14]). In Fig. 4, we show the histogram with the
different recognition error rates obtained with our approach using the motion
maps generated for the CRF and isotropic/anisotropic surround interactions
cells. We obtained an average recognition rate of 98.9% (i.e., mean error rate of
1.1%), which exceeds the results obtained by [14].

To test the robustness of our approach, we considered input sequences with
different kinds of perturbations (Fig. 5): noise (case (2)), legs-occlusion (case
(3)) and moving textured background (case (4)). Both noisy and legs-occluded

sequences were created starting from the sequence shown in Fig. 5(1), which was
extracted from the training set for the robustness experiments. The legs-occluded

sequence was created placing a black box on the original sequence before the
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Fig. 4. Histograms obtained from the recognition error rates of our approach using all
the cells defined in Fig. 2 for Weizmann database and the same experiment protocol
used in [14]. The gray bars are our histogram obtained for gL = 0.25. (a) Mean recog-
nition error rate obtained by [14] (GrC2, dense C2 features): 8.9%/ ± 5.9. (b) Mean
recognition error rate obtained by [14] (GrC2, sparse C2 features): 3.0%/ ± 3.0. (c)
Mean recognition error rate obtained with our approach: 1.1%/ ± 2.1.

dwalk

dside

(1) (2)

(3) (4)

Fig. 5. Results obtained for the robustness experiments carried out for the three input
sequences represented by the snapshots shown for normal-walker (1), noisy sequence
(2), legs-occluded sequence (3) and moving-background sequence (4). In all the cases
the recognition was correctly performed as walk and the second closest distance was
to the class side. The red bars indicate the ratio between the distance to walk class
and the distance to side class (dwalk/dside). The experiments were done for the three
configurations of surround-suppression: (a) just CRF, (b) CRF with isotropic surround
and (c) CRF with isotropic/anisotropic surround (gL = 0.25).
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centered cropping. The noisy sequence was created adding Gaussian noise. The
moving-background sequence was taken from [38]. For the original sequence and
the three modified input sequences the recognition was correctly performed as
walk. A graph with the ratio between the shortest distance to walk class and
the distance to the second closest class (side for the all the cases) is shown in
Fig. 5: the inclusion of the anisotropic surround interaction makes the model
less sensitive to occlusions or noise.

4 Conclusion

We proposed a feedforward bio-inspired model of V1-MT cortical layers that
can be used for solving several aspects of motion integration [18], but also high-
level tasks such as AR for natural scenes stimuli. Our model offers an efficient
platform to unveil the contribution of different components involved in visual
processing within a single experimental framework. One clear advantage of our
model is that it is generic: Unlike [13], there is no need to tune the properties
of local motion given the specific application of AR. Unlike optical-flow based
models, where a single velocity is assigned to each point, our model reproduces to
some extent the richness of center-surround interactions, giving different kinds of
motion contrasts for several orientations at every point. Interestingly, we showed
that taking into account this diversity of MT cells improves the recognition
performance. Our interpretation is that cells with inhibitory surrounds bring
information related to velocity opponency or singularities in the velocity field of
the input stimulus.

Future work will be focused on better exploiting the dynamical state of the
MT layer. Here, we defined the feature vector as the motion map, which rep-
resents the average membrane potential of MT neurons in a temporal window.
Since it is averaged, this representation obviously misses the information about
the fine dynamical properties and the evolution of MT cells. For example, our
goal will be to detect and take into account synchronizations and temporal cor-
relations between cells.

Another perspective is about enriching the model with other brain functions
or cortical layers. Of course, the motion pathway is not the only actor for AR
in the visual system. Like every motion-based approach for AR, our approach
is likely to be limited. It will fail in complex situations such as those with large
occlusions, complex backgrounds or multiple persons. To do this, one has to
consider more complex processing corresponding to additional brain areas (e.g.,
V2, V4 or IT) and top-down mechanisms such as attention (e.g. [19]).
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