23 research outputs found

    Agreement between BMI and body fat obesity definitions in a physically active population

    Get PDF
    Body mass index (BMI) is a widely used proxy of body composition (BC). Concerns exist regarding possible BMI misclassification among active populations. We compared the prevalence of obesity as categorized by BMI or by skinfold estimates of body fat percentage (BF%) in a physically active population. Subjects and methods 3,822 military firefighters underwent a physical fitness evaluation including cardiorespiratory fitness (CRF) by the 12 min-Cooper test, abdominal strength by sit-up test (SUT) and body composition (BC) by BF% (as the reference), as well as BMI. Obesity was defined by BF% > 25% and BMI ≥ 30 kg/m2. Agreement was evaluated by sensitivity and specificity of BMI, positive and negative predictive values (PPV/NPV), positive and negative likelihood (LR+/LR-), receiver operating characteristic (ROC) curves and also across age, CRF and SUT subgroups. Results The prevalence of obesity estimated by BMI (13.3%) was similar to BF% (15.9%). Overall agreement was high (85.8%) and varied in different subgroups (75.3-94.5%). BMI underestimated the prevalence of obesity in all categories with high specificity (≥ 81.2%) and low sensitivity (≤ 67.0). All indices were affected by CRF, age and SUT, with better sensitivity, NPV and LR- in the less fit and older groups; and higher specificity, PPV and LR+ among the fittest and youngest groups. ROC curves showed high area under the curve (≥ 0.77) except for subjects with CRF ≥ 14 METs (= 0.46). Conclusion Both measures yielded similar obesity prevalences, with high agreement. BMI did not overestimate obesity prevalence. BMI ≥ 30 was highly specific to exclude obesity. Because of systematic under estimation, a lower BMI cut-off point might be considered in this population

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Caste Development, Reproductive Strategies, and Control of Fertility in Honey Bees and Stingless Bees

    No full text

    Global impact of the COVID-19 pandemic on subarachnoid haemorrhage hospitalisations, aneurysm treatment and in-hospital mortality: 1-year follow-up

    No full text
    Background Prior studies indicated a decrease in the incidences of aneurysmal subarachnoid haemorrhage (aSAH) during the early stages of the COVID-19 pandemic. We evaluated differences in the incidence, severity of aSAH presentation, and ruptured aneurysm treatment modality during the first year of the COVID-19 pandemic compared with the preceding year. Methods We conducted a cross-sectional study including 49 countries and 187 centres. We recorded volumes for COVID-19 hospitalisations, aSAH hospitalisations, Hunt-Hess grade, coiling, clipping and aSAH in-hospital mortality. Diagnoses were identified by International Classification of Diseases, 10th Revision, codes or stroke databases from January 2019 to May 2021. Results Over the study period, there were 16 247 aSAH admissions, 344 491 COVID-19 admissions, 8300 ruptured aneurysm coiling and 4240 ruptured aneurysm clipping procedures. Declines were observed in aSAH admissions (-6.4% (95% CI-7.0% to-5.8%), p=0.0001) during the first year of the pandemic compared with the prior year, most pronounced in high-volume SAH and high-volume COVID-19 hospitals. There was a trend towards a decline in mild and moderate presentations of subarachnoid haemorrhage (SAH) (mild:-5% (95% CI-5.9% to-4.3%), p=0.06; moderate:-8.3% (95% CI-10.2% to-6.7%), p=0.06) but no difference in higher SAH severity. The ruptured aneurysm clipping rate remained unchanged (30.7% vs 31.2%, p=0.58), whereas ruptured aneurysm coiling increased (53.97% vs 56.5%, p=0.009). There was no difference in aSAH in-hospital mortality rate (19.1% vs 20.1%, p=0.12). Conclusion During the first year of the pandemic, there was a decrease in aSAH admissions volume, driven by a decrease in mild to moderate presentation of aSAH. There was an increase in the ruptured aneurysm coiling rate but neither change in the ruptured aneurysm clipping rate nor change in aSAH in-hospital mortality. Trial registration number NCT04934020. © Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ
    corecore