173 research outputs found

    On SIC-POVMs in Prime Dimensions

    Full text link
    The generalized Pauli group and its normalizer, the Clifford group, have a rich mathematical structure which is relevant to the problem of constructing symmetric informationally complete POVMs (SIC-POVMs). To date, almost every known SIC-POVM fiducial vector is an eigenstate of a "canonical" unitary in the Clifford group. I show that every canonical unitary in prime dimensions p > 3 lies in the same conjugacy class of the Clifford group and give a class representative for all such dimensions. It follows that if even one such SIC-POVM fiducial vector is an eigenvector of such a unitary, then all of them are (for a given such dimension). I also conjecture that in all dimensions d, the number of conjugacy classes is bounded above by 3 and depends only on d mod 9, and I support this claim with computer computations in all dimensions < 48.Comment: 6 pages, no figures. v3 Refs added, improved discussion of previous work. Ref to a proof of the main conjecture also adde

    Testing of tritium breeder blanket activation foil spectrometer during JET operations

    Get PDF
    Accurate measurement of the nuclear environment within a test tritium breeding-blanket module of a fusion reactor is crucial to determine tritium production rates which are relevant to self-sufficiency of tritium fuel supply, tritium accountancy and also to the evaluation of localised power levels produced in blankets. This requires evaluation of the time-dependent spectral neutron flux within the test tritium breeding-blanket module under harsh radiation and temperature environments. The application of an activation foil-based spectrometer system to determine neutron flux density using a pneumatic transfer system in ITER has been studied, deployed and tested on the Joint European Torus (JET) machine in a recent deuterium - deuterium campaign for a selection of high purity activation foils. Deployment of the spectrometer system has provided important functional and practical testing of the detector measurement system, associated hardware and post processing techniques for the analysis of large data sets produced through the use of list mode data collection. The testing is invaluable for the optimisation of systems for future planned testing in tritium - tritium and deuterium - tritium conditions. Analysis of the time and energy spectra collected to date and the status of the development of methods for post processing are presented in this paper

    First evidence of multiple beta-delayed neutron emission for isotopes with A > 100

    Get PDF
    The beta-delayed neutron emission probability, P-n, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, S-n. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which beta-delayed one-neutron emission (beta 1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. beta 1n decays have been experimentally measured up to the mass A similar to 1 5 0, plus a single measurement of Tl-210. Concerning two-neutron emitters (beta 2n), similar to 3 0 0 isotopes are accessible and only 24 have been measured so far up to the mass A = 100. In this contribution, we report recent experiments which allowed the measurement of beta 1n emitters for masses beyond A > 200 and N > 1 2 6 and identified the heaviest beta 2n emitter measured so far, Sb-136.Peer reviewe

    Measurement of the heaviest beta-delayed 2-neutron emitter : Sb-136

    Get PDF
    The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.The beta-delayed neutron emission probability, P-n, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of beta-delayed one-neutron emitters (beta 1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of beta-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed Sb-136 as the heaviest double neutron emitter (beta 2n) measured so far.Peer reviewe

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF
    The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices

    Interpretative and predictive modelling of Joint European Torus collisionality scans

    Get PDF
    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as □(→┬E ) X □(→┬B ) shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges

    Comparing pedestal structure in JET-ILW H-mode plasmas with a model for stiff ETG turbulent heat transport

    Get PDF
    A predictive model for the electron temperature profile of the H-mode pedestal is described, and its results are compared with the pedestal structure of JET-ILW plasmas. The model is based on a scaling for the gyro-Bohm normalized, turbulent electron heat flux qe/qe,gB resulting from electron temperature gradient (ETG) turbulence, derived from results of nonlinear gyrokinetic (GK) calculations for the steep gradient region. By using the local temperature gradient scale length L-Te in the normalization, the dependence of q(e)/q(e,g)B on the normalized gradients R/L-Te and R/(Lne) can be represented by a unified scaling with the parameter eta(e) = L-ne/L-Te, to which the linear stability of ETG turbulence is sensitive when the density gradient is sufficiently steep. For a prescribed density profile, the value of R/L-Te determined from this scaling, required to maintain a constant electron heat flux qe across the pedestal, is used to calculate the temperature profile. Reasonable agreement with measurements is found for different cases, the model providing an explanation of the relative widths and shifts of the T-e and n(e) profiles, as well as highlighting the importance of the separatrix boundary conditions. Other cases showing disagreement indicate conditions where other branches of turbulence might dominate.This article is part of a discussion meeting issue "H-mode transition and pedestal studies in fusion plasmas'

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme
    • …
    corecore