170 research outputs found

    Analyzing co-creation levels of urban living labs in Europe

    Get PDF
    Which characteristic of urban living labs (ULL) that focus on urban sustainability, including climate change and water issues, can enhance its level of co-creation? The main question raised for this research paper builds on the idea that optimization of characteristics can positively affect co-creation levels, ultimately improving the outcome of the urban living lab. Through data collected from an online survey participated in by 29 urban living labs in Europe which focused on varying issues, such as water and climate change, it became clear that the most important characteristic to enhance co-creation levels was to establish very clear ULL aims in the first instance. Without a purposive aim, the successful delivery of co-creation outputs proves difficult

    Lunar Mapping and Modeling Project

    Get PDF
    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data

    Age-Related Differences in Cortical Thickness Vary by Socioeconomic Status

    Get PDF
    Recent findings indicate robust associations between socioeconomic status (SES) and brain structure in children, raising questions about the ways in which SES may modify structural brain development. In general, cortical thickness and surface area develop in nonlinear patterns across childhood and adolescence, with developmental patterns varying to some degree by cortical region. Here, we examined whether age-related nonlinear changes in cortical thickness and surface area varied by SES, as indexed by family income and parental education. We hypothesized that SES disparities in age-related change may be particularly evident for language- and literacy-supporting cortical regions. Participants were 1148 typically-developing individuals between 3 and 20 years of age. Results indicated that SES factors moderate patterns of age-associated change in cortical thickness but not surface area. Specifically, at lower levels of SES, associations between age and cortical thickness were curvilinear, with relatively steep age-related decreases in cortical thickness earlier in childhood, and subsequent leveling off during adolescence. In contrast, at high levels of SES, associations between age and cortical thickness were linear, with consistent reductions across the age range studied. Notably, this interaction was prominent in the left fusiform gyrus, a region that is critical for reading development. In a similar pattern, SES factors significantly moderated linear age-related change in left superior temporal gyrus, such that higher SES was linked with steeper age-related decreases in cortical thickness in this region. These findings suggest that SES may moderate patterns of age-related cortical thinning, especially in language- and literacy-supporting cortical regions

    Mother-child histocompatibility and risk of rheumatoid arthritis and systemic lupus erythematosus among mothers.

    Get PDF
    The study objective was to test the hypothesis that having histocompatible children increases the risk of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), possibly by contributing to the persistence of fetal cells acquired during pregnancy. We conducted a case control study using data from the UC San Francisco Mother Child Immunogenetic Study and studies at the Inova Translational Medicine Institute. We imputed human leukocyte antigen (HLA) alleles and minor histocompatibility antigens (mHags). We created a variable of exposure to histocompatible children. We estimated an average sequence similarity matching (SSM) score for each mother based on discordant mother-child alleles as a measure of histocompatibility. We used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals. A total of 138 RA, 117 SLE, and 913 control mothers were analyzed. Increased risk of RA was associated with having any child compatible at HLA-B (OR 1.9; 1.2-3.1), DPB1 (OR 1.8; 1.2-2.6) or DQB1 (OR 1.8; 1.2-2.7). Compatibility at mHag ZAPHIR was associated with reduced risk of SLE among mothers carrying the HLA-restriction allele B*07:02 (n = 262; OR 0.4; 0.2-0.8). Our findings support the hypothesis that mother-child histocompatibility is associated with risk of RA and SLE

    Klotho gene polymorphism, brain structure and cognition in early-life development

    Get PDF
    Open access via Springer Compact Agreement Acknowledgements We thank the PING study participants who contributed to the research. The study was supported by the University of Aberdeen Development Trust and by the SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence) Postdoctoral and Early Career Researcher Exchanges funding. The PING Study (National Institutes of Health Grant RC2DA029475) funded data collection and sharing for this project. PING is funded by the National Institute on Drug Abuse and the Eunice Kennedy Shriver National Institute of Child Health & Human Development. PING data are disseminated by the PING Coordinating Center at the Center for Human Development, University of California, San Diego. Data used in preparation of this article were obtained from the Pediatric Imaging, Neurocognition and Genetics Study (PING) database (http://ping.chd.ucsd.edu/). As such, the investigators within PING contributed to the design and implementation of PING and/or provided data but did not participate in analysis or writing of this report. A complete listing of PING investigators can be found at http://ping.chd.ucsd.edu/index.php?option=com_content&view=article&id=104&Itemid=134. The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. Neuroimaging was supported by the Netherlands Organization for Health Research and Development (ZonMw) TOP project number 91211021. We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. We would like to thank Karol Estrada, Dr. Tobias A. Knoch, Anis Abuseiris, Luc V. de Zeeuw, and Rob de Graaf, for their help in creating GRIMP, BigGRID, MediGRID, and Services@MediGRID/D-Grid, [funded by the German Bundesministerium fuer Forschung und Technology; grants 01 AK 803 A-H, 01 IG 07015 G] for access to their grid computing resources. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Manoushka Ganesh, Lizbeth Herrera and Marjolein Peters for their help in creating, managing and QC of the GWAS database. The general design of Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, ZonMw, the Netherlands Organisation for Scientific Research (NWO), the Ministry of Health, Welfare and Sport and the Ministry of Youth and Families.Peer reviewedPublisher PD

    The Impact of a Poverty Reduction Intervention on Infant Brain Activity

    Get PDF
    Early childhood poverty is a risk factor for lower school achievement, reduced earnings, and poorer health, and has been associated with differences in brain structure and function. Whether poverty causes differences in neurodevelopment, or is merely associated with factors that cause such differences, remains unclear. Here, we report estimates of the causal impact of a poverty reduction intervention on brain activity in the first year of life. We draw data from a subsample of the Baby's First Years study, which recruited 1,000 diverse low-income mother–infant dyads. Shortly after giving birth, mothers were randomized to receive either a large or nominal monthly unconditional cash gift. Infant brain activity was assessed at approximately 1 y of age in the child's home, using resting electroencephalography (EEG; n = 435). We hypothesized that infants in the high-cash gift group would have greater EEG power in the mid- to high-frequency bands and reduced power in a low-frequency band compared with infants in the low-cash gift group. Indeed, infants in the high-cash gift group showed more power in high-frequency bands. Effect sizes were similar in magnitude to many scalable education interventions, although the significance of estimates varied with the analytic specification. In sum, using a rigorous randomized design, we provide evidence that giving monthly unconditional cash transfers to mothers experiencing poverty in the first year of their children's lives may change infant brain activity. Such changes reflect neuroplasticity and environmental adaptation and display a pattern that has been associated with the development of subsequent cognitive skills

    The Adolescent Brain : A second window to opportunity

    Get PDF
    Scientific advances over the past decade have contributed to a much greater understanding of the growth of the human brain from birth to adulthood. Latest evidence illuminates the adolescent brain as a ‘work in progress’, and adolescence as a critical period to build on early investments, offering a second chance for those who have not fared well in early childhood. Neuroscientific research in particular is integral to improving our understanding of the cerebral transformations that take place during this time and how they are influenced by interactions between the evolving adolescent brain and the environment in which it develops. In the field of early childhood development (ECD), neuroscientific evidence featured prominently in galvanizing positive change for children through changes in policy and programming and more of this type of evidence is needed to also provide answers regarding critical intervention junctures and approaches during adolescence. In this compendium, eight experts in adolescent neuroscience and development summarize scientific and programmatic evidence from their work, offering an insight into how to maximize the potential of adolescents during this period of opportunity, but also vulnerability. It builds on the discussions initiated at a one-day symposium entitled The Adolescent Brain: A second window of opportunity, held on 4 May 2016 at UNICEF headquarters in New York. The event brought together specialists to review the state of science related to the adolescent brain, specifically focusing on how to guide future responses to programming and policy and providing directions for research to further advance these aims. The advances and investments made in ECD must be continued for children in their second decade of life. Adolescence is a time of both opportunity and vulnerability. Many problematic and risky behaviours are activated in adolescence, including substance abuse, and behaviours that can lead to sexually transmitted diseases HIV/AIDS, road injuries, drowning and other negative outcomes (Mokdad, 2016). It is a time when mental illness and the incidence of suicide sharply increases (Petroni, Patel and Patton, 2016) and when experiences of bullying, inter-personal violence and exclusion often leave a long-term mark on the individual (Lupien, 2012). The commentaries in this compendium together summarize the state of adolescent neuroscience, reflecting on what is known about positive and negative impacts on brain development, including the effects of poverty, violence, stress, technology, but also socio-emotional learning, meditation, nutrition, counselling and positive relationships. They go beyond the science to discuss its application for maximizing the potential of adolescents. This compendium is designed to encourage further dialogue stimulated by new thinking grounded in adolescent neuroscience research and its application. It aims to challenge readers to bring science to bear on programme interventions and public policies for adolescents. An improved understanding from neuroscience is well-placed to strengthen behavioural evidence and provide a more complete picture of adolescent behaviour and development, while also stimulating fresh thinking and approaches that can be tested
    corecore