118 research outputs found

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    The dynamic range of the upgraded surface-detector stations of AugerPrime

    Get PDF
    The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by the saturation of the recorded signals near the impact point of the shower core at the ground, where the particle density dramatically increases. The saturation affects in particular the highest energy events, worsening the systematic uncertainties in the reconstruction of the shower characteristics. The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of the surface detector array. The SPMT allows an unambiguous measurement of signals down to about 250m from the shower core, thus reducing the number of events featuring a saturated station to a negligible level. In addition, a 3.8m2 plastic scintillator (Scintillator Surface Detector, SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT) dynamic range, providing a complementary measurement of the shower components up to the highest energies. In this work, the design and performances of the upgraded AugerPrime surface-detector stations in the extended dynamic range are described, highlighting the accuracy of the measurements. A first analysis employing the unsaturated signals in the event reconstruction is also presented

    Expected performance of the AugerPrime Radio Detector

    Get PDF

    Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF

    AugerPrime implementation in the DAQ systems of the Pierre Auger Observatory

    Get PDF

    Radio Interferometry applied to air showers recorded by the Auger Engineering Radio Array

    Get PDF
    A new radio interferometric technique was recently developed that takes into account time lags caused by the three-dimensional dependency of the refractive index in the atmosphere. It enables us to track the extensive air shower while it propagates through the atmosphere. Using this technique, properties of the air shower can be estimated, like the depth of maximum and the axis of propagation. In order to apply this method, strict constraints on the time-synchronisation between radio antennas in an array must be satisfied. In this contribution, we show that the Auger Engineering Radio Array can meet these timing criteria by operating a time reference beacon. We will show how this enables us to reconstruct air shower properties using the radio interferometric technique

    Mass Composition from 3 EeV to 100 EeV using the Depth of the Maximum of Air-Shower Profiles Estimated with Deep Learning using Surface Detector Data of the Pierre Auger Observatory

    Get PDF
    corecore