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The detection of ultra-high-energy cosmic rays by means of giant detector arrays is often limited by
the saturation of the recorded signals near the impact point of the shower core at the ground, where
the particle density dramatically increases. The saturation affects in particular the highest energy
events, worsening the systematic uncertainties in the reconstruction of the shower characteristics.
The upgrade of the Pierre Auger Observatory, called AugerPrime, includes the installation of
an 1-inch Small PhotoMultiplier Tube (SPMT) inside each water-Cherenkov station (WCD) of
the surface detector array. The SPMT allows an unambiguous measurement of signals down
to about 250 m from the shower core, thus reducing the number of events featuring a saturated
station to a negligible level. In addition, a 3.8 m2 plastic scintillator (Scintillator Surface Detector,
SSD) is installed on top of each WCD. The SSD is designed to match the WCD (with SPMT)
dynamic range, providing a complementary measurement of the shower components up to the
highest energies. In this work, the design and performances of the upgraded AugerPrime surface-
detector stations in the extended dynamic range are described, highlighting the accuracy of the
measurements. A first analysis employing the unsaturated signals in the event reconstruction is
also presented.
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1. Introduction

The Surface Detector (SD) of the Pierre Auger Observatory comprises about 1600 water-
Cherenkov detectors arranged in an 1.5 km triangular grid over an area of ∼3000 km2. Extensive
air-showers are measured by recording the signals and arrival times of the secondary particles at
the ground level, which spread over areas larger than 15 km2 for primary energies above 3 EeV.
The Cherenkov light produced by the shower particles in each WCD are collected by three 9-inch
Photonis XP1805 photomultipliers (Large PMTs, LPMTs), for which each input is split in two
channels, one amplified (High Gain) with a factor of 32 with respect to the other (Low Gain). Such
gain ratio is required to achieve a dynamic range of measurement varying from very low signals
generated by single atmospheric muons (used to calibrate the detector), to small signals produced
by few shower particles reaching the stations far from the impact point of the shower core at the
ground, up to hundreds of thousands of particles in the station closest to the core.

When the distance between the detector and the shower core is shorter than a few hundred
meters, the dynamic range turns out to be insufficient to record the signal produced by the huge
amount of secondary particles hitting the WCD, which is then tagged as saturated. The saturation
initially appears only in the digitized signal traces, as it is due to the FADCs overflow. An actual
saturation of the photomultiplier is instead observed when extreme amounts of light reach the
LPMTs photocathodes, resulting in a deviation from the linear response. A recovery procedure [1]
was implemented to estimate the loss of signal due to saturation. However, when the photomultiplier
saturation comes into play, the accuracy of the recovered signal can be worse than 50% and a better
estimation can only be obtained with a detailed knowledge of each of the 5000 LPMTs responses
in the non-linear region, a non feasible solution.

The measured SD energy estimator S(1000), which is proportional to the density of particles
at 1 km from the shower axis, is almost not affected by the presence of a saturated station in the
event. On the contrary, its resolution, as shown in Ref. [2], worsens from 3% to about 7% when
saturation is present.

In the last years the Pierre Auger Collaboration started an upgrade of the Observatory, called
AugerPrime [3, 4], of which the main aim is the collection of new observables sensitive to the
nuclear mass of the primary UHECRs. The upgrade consists of several new detectors added to
the SD stations, which provide complementary measurements of the shower particles at the ground
and thus will allow to disentangle the muonic and electromagnetic components of the showers in
combination with the WCD. At the same time, the new detectors are designed to extend the dynamic
range of the SD acquisition by more than a decade, recording signals at least as close as 250 m from
the shower core without saturation, thus considerably increasing the fraction of events that can be
reconstructed unambiguously, i.e. with a complete signal in all stations, up to the highest energies.

2. The AugerPrime upgraded station

The upgraded SD station is equipped with an additional 1-inch diameter photomultiplier
(SPMT) installed inside the WCD, a plastic scintillator (SSD) and a radio antenna placed on top
of the tank. An underground muon detector is deployed aside the WCDs in a limited area of the
array, where the spacing between stations is reduced to 750 m. Moreover, a new electronics (Up-
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graded Unified Board, UUB) is installed in each station to process the signals collected by all the
detectors, with improved performances and data processing capabilities; a detailed description can
be found in Ref. [5]. The added components use the existing communication system and powering
infrastructure, except for the substitution of the solar panels to satisfy the increased power-budget
demand. Starting from the end of 2020, an increasing part of the SD array has been systematically
upgraded with the installation of the UUBs together with the SPMTs and SSD PMTs. During this
period the monitoring, acquisition and reconstruction pipelines have been updated to integrate the
measurements from the AugerPrime detectors in the data-taking scheme, assessing their conformity
to the design requirements. The deployment has been completed in July 2023, and a report on the
status and performances can be found in Ref. [6].

The Small PMT. A small 1-inch diameter Hamamatsu R8619 photomultiplier is installed in
each WCD exploiting a hitherto unused and easily accessible 30 mm window on the Tyvek bag
containing the ultra-pure water. A detailed description of the design and validation tests can be
found in Refs. [7, 8] and references therein.

The direct calibration with atmospheric muons employed for the LPMTs is not feasible for the
SPMT, due to its photocathode dimensions. In fact, the light released by a single muon crossing
the WCD produces on average ∼90 photoelectrons in the LPMTs, while only ∼1 in the SPMT. For
this reason, a procedure of cross-calibration of the SPMT with the LPMTs has been developed.
Its goal is to derive the conversion factor from the collected charge measured in ADC channels
into a signal expressed in physical units, that for the WCDs of the Pierre Auger Observatory is the
Vertical Equivalent Muon (VEM), i.e. the signal produced by a vertical muon traversing the tank at
its center. The conversion factor 𝛽 is thus defined as

𝑆SPMT = 𝛽𝑄SPMT (1)
and it is derived by minimizing the differences between the signal spectra measured by the two
typologies of PMTs in the same station. A WCD participates in an extensive air-shower event, and
thus transmits the triggered signals, only a few times per day. As a consequence, to effectively
perform the cross-calibration, a dedicated selection of signals from local low-energy showers
(hereafter called small showers) has been implemented in the UUB data acquisition software [9].
Small showers are selected requiring a 2-fold coincidence among the 3 LPMTs above individual
thresholds between 350 and 550 ADC counts (depending on the gain of each LPMT). A rate of
about 200 events/hour is measured separately in each WCD.

The minimization of the differences between the calibrated signal spectra is performed in a
superposition region limited: at the lower end, by imposing a minimum of ∼200 VEM on the
LPMTs average, to guarantee a signal in the SPMT large enough to be only marginally affected by
statistical fluctuations; at the higher end, by the LPMTs (electronic) saturation. A typical result
for one upgraded WCD is shown in the left part of Fig. 1, where the two spectra are superimposed
in the region below the LPMTs saturation (starting at around 650 VEM) and an extension of the
dynamic range up to about 20,000 VEM is achieved with the SPMT measurements.

In order to follow the daily evolution of the SPMT gain due to the temperature variations,
the cross-calibration is performed in an 8-hour sliding window. In this way, a precision in the
determination of the cross-calibration factor of ∼2.2% is obtained. An example for one station is
shown in the right panel of Fig. 1, where the changes in the cross-calibration factor (which can
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Figure 1: Left: Spectra of small showers signals collected in about one month in one upgraded station.
Right: Cross-calibration factor 𝛽 for a typical SPMT. The correlation with temperature can be clearly seen.

be as large as ±5% on a daily basis) clearly match the temperature behaviour. The signals from
extensive air-showers are eventually calibrated with the nearest 𝛽 value in time, using the center of
each 8-hour interval as a reference.

The Scintillator Surface Detector. The SSD basic unit consists of two scintillator panels, each
covering an area of ≃2 m2, enclosed in a light-tight aluminum box mounted on top of a WCD. Each
SSD is equipped with an 1.5-inch bi-alkali Hamamatsu R9420 photomultiplier, located in-between
the panels and collecting the light via wavelength-shifting fibers. The output of the SSD PMT
is split into two channels, the first one attenuated by a factor 4 (Low Gain) and the second one
amplified by a factor 32 (High Gain). This yields a total gain ratio of 128, which allows to cover
the required dynamic range. The SSD PMT has been chosen accordingly, being linear within 5%
for peak currents up to 160 mA (for a gain of 8 × 104). A description of the design and validation
tests can be found in Ref. [10] and references therein.
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Figure 2: Histograms of VEM and MIP
integrated charges, collected in 60 s in one
upgraded station.

As for the LPMTs, the SSD calibration is per-
formed using the signals of the atmospheric back-
ground particles, collected by means of a dedicated
trigger [11]. An example of the acquired charge distri-
bution is shown in Fig. 2. Differently from the WCD,
muons and electrons deposit on average the same en-
ergy in a scintillator, so the reference physical unit for
SSD measurements is the MIP, i.e. the signal produced
by a Minimum-Ionizing Particle vertically crossing the
module. Analogously to the VEM, the most probable
charge deposited by a MIP is estimated by fitting the
second peak of the charge distribution, the first one be-
ing due to the integration of the baseline noise when a
time window with no particle signals in the SSD is acquired. In fact, in the calibration process the
SSD acts as a subordinate and, given its smaller effective area with respect to the WCD, only about
40% of the calibration triggers correspond to a MIP in the SSD. Nonetheless, the “hump” of both
SSD and WCD charge distributions is successfully found for ∼99% of the acquired histograms.
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3. The extended dynamic range

Featuring the same bialkali photocathode of the LPMTs but with an active area ∼80 times
smaller, the SPMT potentially allows for an equivalent extension of the WCD dynamic range of
acquisition. Adjusting its gain in such a way that the ratio of the LPMTs to SPMT signals is limited
to a value of ∼32, an extension up to about 20,000 VEM can be obtained. With this configuration,
the probability of having a saturated station per event is predicted to reduce to a few % even at the
highest energies, while in the non-upgraded detector it was as high as ∼40% at shower energies of
1019.5 eV, and further increasing with energy.

At the same time, the SSD provides a complementary measurement of the shower particles at the
ground, and the combination with the WCD will allow to disentangle the muonic and electromagnetic
components of the showers by exploiting the different responses of the two detectors. In order to
benefit the most from the joint information of SSD and WCD measurements, the extended dynamic
ranges of both detectors are designed to be similar. For the SSD, this implies to measure non-
saturated signals up to ∼20,000 MIP.

The correlation between the signals from extensive air-shower events, collected by the two
detectors (WCD and SSD) during the deployment period, is shown in the left side of Fig. 3, where
both scales are expressed in the corresponding physical units (VEM for the WCD and MIP for the
SSD). The signals in the WCDs are measured by the LPMTs up to the saturation (∼650 VEM),
while above they are derived from the SPMT. The required dynamic range is nicely covered up to the
highest particle densities, and the evident correlation allows for a direct cross check between the two
detector performances, also demonstrating the validity of the independent calibration procedures.

The increased dynamic range directly impacts the event reconstruction, enhancing the con-
straining power of the measurements from the station nearest to the shower core in case the LPMT
saturation occurs. However, prior to incorporating the new measurements in the reconstruction
procedure, the signal accuracy of each of the upgraded detectors has to be quantified.
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Figure 3: Left: correlation of SSD and WCD signals measured in extensive air-shower events. The LPMTs
are used up to the saturation (blue dots); the measurements are extended further by means of the SPMT (red
dots). Right: relative accuracy for the WCD signals as parameterized in Eqs. (2) and (3).

5



P
o
S
(
I
C
R
C
2
0
2
3
)
3
4
3

AugerPrime dynamic range Gioacchino Alex Anastasi

Signal accuracy. A data-driven estimation of the LPMTs signal accuracy is obtained from doublet
stations, which have a separation of ∼11 m on the ground. The method is described in Ref. [12]
and, applied to the upgraded stations, it provides a Poisson-like parameterization:

𝜎2
𝑆 = 𝑓 2

𝑆 (\) 𝑆, where 𝑓𝑆 (\) = (0.22 ± 0.09) + (0.55 ± 0.07) sec \, (2)

with \ the zenith angle of the shower.
In the case of the SPMT, very limited statistics has been collected up to now from doublet

stations since signals from extensive air-showers in the range of interest (that is above a few hundred
VEM) are unavoidably scarce. The SPMT signal accuracy is currently evaluated by comparing
the LPMTs and SPMT signals, exploiting the small showers collected for the cross-calibration. In
particular, the SPMT signal variance is calculated from the dispersion of the relative differences
(𝑆SPMT − 𝑆LPMTs)/𝑆LPMTs by subtracting the LPMTs accuracy from Eq. (2). The parameterization
obtained in the region below the LPMTs saturation is:

𝜎2
𝑆 = 𝑓 2

𝑆 𝑆 + 𝑐2 𝑆2, where 𝑓𝑆 = (1.8 ± 0.2) , 𝑐 = (0.06 ± 0.01), (3)

which is then extrapolated to higher SPMT signals. For the constant term 𝑐, a value compatible
with the overall uncertainties in the cross-calibration procedure is obtained. For the Poissonian-like
factor 𝑓𝑆 , a value at least

√
3 times larger than the LPMTs was actually expected, which corresponds

to the difference in the accuracy between the measurements from a single detector (as the SPMT)
and the average of 3 detectors (as for the LPMTs average signal). Since the small-shower events are
acquired locally in each station, the information on the zenith angle is not available; an evaluation
of the zenith dependence is under study by using simulated events.

The accuracy of the WCD PMT measurements is shown in the right plot of Fig. 3. The relative
uncertainty on the SPMT signal is lower than 10% when the LPMTs start saturating, and then it
rapidly approaches the lower limit of ∼6% dictated by the cross-calibration uncertainty. In a limited
region above the saturation of the LPMTs (∼650 VEM) and below ∼1000 VEM, the accuracy of the
signals measured by the LPMTs, although saturated, is estimated to be better than the one from the
SPMT. Studies on the opportunity of using such signals in the reconstruction are ongoing. On the
contrary, for larger signals the SPMT alone delivers unsaturated signals with higher accuracy.

The SSD signal accuracy has been derived from simulations of pseudo-doublets, i.e. pairs of
stations located at the same lateral distance from the Monte-Carlo simulated shower core but on
opposite sides of the shower axis. Also the SSD signal uncertainties are found to be proportional
to the square root of the signal, and have been parameterized as

𝜎2
𝑆 = 𝑓 2

𝑆 (\) 𝑆, where 𝑓𝑆 (\) = 1.449 × [1 + 0.175(sec \ − sec 35◦)] . (4)

A first comparison with measurements by doublets of SSD detectors showed an agreement roughly
within a few percent. Due to the nature of Poisson fluctuations, the relative uncertainty amounts to
only a few percent for signals measured within a few hundred meters from the shower axis.

Event reconstruction. The key ingredients in the reconstruction of the arrival direction and of the
energy of a shower are: (i) the timing information of the stations, from which the direction of the
axis is obtained; (ii) the size of the signals measured in each station, which are fitted as a function
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of the distance from the axis to determine the position of the impact point of the core on the ground
and the shower size S(1000), the estimator of the primary energy.

At present, the reconstruction of the shower geometry is performed using only the information
from the WCD LPMTs and following the well-studied procedure described in Ref. [2]. Then
the Lateral Distribution Function (LDF) of the shower is derived by fitting the particle densities
measured at each SD station as a function of the distance 𝑟 to the shower core. A data-driven
average LDF in the form 𝑆(𝑟) = 𝑆(𝑟opt) 𝑓LDF(𝑟) is employed, where 𝑟opt is the so-called optimal
distance1 and 𝑓NKG(𝑟) a modified Nishimura-Kamata-Greisen function:

𝑓NKG(𝑟) =
(
𝑟

𝑟opt

)𝛽 (
𝑟 + 𝑟𝑠

𝑟opt + 𝑟𝑠

)𝛽+𝛾
, (5)

where 𝑟𝑠 = 700 m and 𝛽, 𝛾 are the average slopes, parametrized as functions of shower size and
zenith angle. The shower size estimator is defined as the value of 𝑆(𝑟opt) and, in the case of the
Pierre Auger Observatory SD, 𝑟opt = 1000 m.

The extension of the procedure to the SSD measurements has been presented in Ref. [13].
The main difference with respect to the traditional reconstruction is that the LDF fit of the SSD
signals is performed after fixing the geometry of the shower to the result of the WCD LDF fit. As a
consequence, the corresponding uncertainties must be propagated to the SSD signals and added to
the signal accuracy from Eq. (4).

An example event, measured with the upgraded SD stations, is shown in Fig. 4. Using the
SPMT signal, we are able to constrain the WCD LDF fit down to distances as close as 250 m from
the shower core, while only a lower limit (the saturated signal) or a rough estimation (the recovered
signal) could be employed before. In this way, a more accurate estimation of S(1000) is obtained
and an increased precision in the determination of the shower core is foreseen. In addition, a
complementary shower-size estimator from measurements by the SSDs is reconstructed in the same
range of particle densities.

4. Summary and Outlook

In the context of the AugerPrime upgrade of the Pierre Auger Observatory, the dynamic range of
acquisition of the water-Cherenkov detectors has been extended with the addition of a small diameter
photomultiplier, the SPMT, which allows for the measurement of signals without saturation in the
vast majority of the observed extensive air-shower events. At the same time, a scintillator detector
has been installed on top of each tank, delivering a complementary measurement of the shower
particles at ground level. The same dynamic range of the WCD with the SPMT is reached in the
SSD by employing a highly-linear photomultiplier and by splitting its output into two channels with
a gain ratio of 128.

The first events collected with the array of upgraded stations confirm the effectiveness of
this design, allowing the measurement of signals up to at least 20,000 VEM and correspondingly
20,000 MIP without saturation in the digitized traces. As a consequence, the fit of the Lateral

1The optimal distance 𝑟opt has to be chosen so that the variability in the shower size estimator induced by the
shower-to-shower fluctuations is minimized [14].
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Figure 4: One high-energy event collected by AugerPrime detectors, a 23 EeV shower arriving at a zenith
angle of 26.7◦ and detected with the WCDs (black dots) and SSDs (red squares). In the station nearest to the
shower core the LPMTs are saturated, thus the SPMT signal is used (green cross). The SSD signals and SSD
LDF are multiplied by a factor 5 for clarity.

Distribution Function can be effectively constrained at least down to distances of about 250 m from
the shower core even at the highest energies.

In this configuration, the measurements of the SD will allow to test the modelling of the
LDF shape in a range of distances and energies never explored before, reducing the systematic
uncertainties in the event reconstruction and in particular in the determination of the shower size, the
estimator of the primary energy. Moreover, the studies on the deconvolution of the electromagnetic
and muonic shower components, based on the combined information of the WCD and SSD, will
benefit from the direct measurement of the shower characteristics in the region near the shower
core, where most of the energy is deposited.
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