165 research outputs found

    A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentalizing ÎČ-catenin.

    Get PDF
    Cellular proliferation is antagonistically regulated by canonical and noncanonical Wnt signals; their dysbalance triggers cancers. We previously showed that a multimodular signal transducer, Daple, enhances PI3-K→Akt signals within the noncanonical Wnt signaling pathway and antagonistically inhibits canonical Wnt responses. Here we demonstrate that the PI3-K→Akt pathway serves as a positive feedback loop that further enhances noncanonical Wnt signals by compartmentalizing ÎČ-catenin. By phosphorylating the phosphoinositide- (PI) binding domain of Daple, Akt abolishes Daple's ability to bind PI3-P-enriched endosomes that engage dynein motor complex for long-distance trafficking of ÎČ-catenin/E-cadherin complexes to pericentriolar recycling endosomes (PCREs). Phosphorylation compartmentalizes Daple/ÎČ-catenin/E-cadherin complexes to cell-cell contact sites, enhances noncanonical Wnt signals, and thereby suppresses colony growth. Dephosphorylation compartmentalizes ÎČ-catenin on PCREs, a specialized compartment for prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work not only identifies Daple as a platform for cross-talk between Akt and the noncanonical Wnt pathway but also reveals the impact of such cross-talk on tumor cell phenotypes that are critical for cancer initiation and progression

    Sports Scene Searching, Rating & Solving using AI

    Get PDF
    This work shows the application of artificial intelligence (AI) on invasion game tracking data to realize a fast (sub-second) and adaptable search engine for sports scenes, scene ratings based on machine learning (ML) and computer-generated solutions using reinforcement learning (RL). We provide research results for all three areas. Benefits are expected for accelerated video analysis at professional sports clubs.Diese Arbeit zeigt die Anwendung von kĂŒnstlicher Intelligenz (KI) auf Invasionsspielverfolgungsdaten, um eine schnelle (unter einer Sekunde) und anpassungsfĂ€hige Suchmaschine fĂŒr Sportszenen zu realisieren, Szenenbewertungen auf der Grundlage von maschinellem Lernen (ML) und computergenerierte Lösungen unter Verwendung von VerstĂ€rkungslernen (RL). Wir stellen Forschungsergebnisse fĂŒr alle drei Bereiche vor. Es werden Vorteile fĂŒr eine beschleunigte Videoanalyse in Profisportvereinen erwartet

    Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin.

    Get PDF
    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein-protein interaction, and kinase assays, we demonstrate that a stretch of ∌110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein-protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV-Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs

    Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity.

    Get PDF
    Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles

    Prognostic relevance of CCDC88C (Daple) transcripts in the peripheral blood of patients with cutaneous melanoma

    Get PDF
    A loss of balance between G protein activation and deactivation has been implicated in the initiation of melanomas, and non-canonical Wnt signaling via the Wnt5A/Frizzled (FZD) pathway has been shown to be critical for the switch to an invasive phenotype. Daple [CCDC88C], a cytosolic guanine nucleotide exchange modulator (GEM) which enhances non-canonical Wnt5A/FZD signaling via activation of trimeric G protein, Gαi, has been shown to serve opposing roles-as an inducer of EMT and invasiveness and a potent tumor suppressor-via two isoforms, V1 (full-length) and V2 (short spliced isoform), respectively. Here we report that the relative abundance of these isoforms in the peripheral circulation, presumably largely from circulating tumor cells (CTCs), is a prognostic marker of cutaneous melanomas. Expression of V1 is increased in both the early and late clinical stages (p \u3c 0.001, p = 0.002, respectively); V2 is decreased exclusively in the late clinical stage (p = 0.003). The two isoforms have opposing prognostic effects: high expression of V2 increases relapse-free survival (RFS; p = 0.014), whereas high expression of V1 tends to decrease RFS (p = 0.051). Furthermore, these effects are additive, in that melanoma patients with a low V2-high V1 signature carry the highest risk of metastatic disease. We conclude that detection of Daple transcripts in the peripheral blood (i.e., liquid biopsies) of patients with melanoma may serve as a prognostic marker and an effective strategy for non-invasive long-term follow-up of patients with melanoma

    Fermi level shift in carbon nanotubes by dye confinement

    Get PDF
    International audienceDye confinement into carbon nanotube significantly affects the electronic charge density distribution of the final hybrid system. Using the electron-phonon coupling sensitivity of the Raman G-band, we quantify experimentally how charge transfer from thiophene oligomers to single walled carbon nanotube is modulated by the diameter of the nano-container and its metallic or semiconducting character. This charge transfer is shown to restore the electron-phonon coupling into defected metallic nanotubes. For sub-nanometer diameter tube, an electron transfer optically activated is observed when the excitation energy matches the HOMO-LUMO transition of the confined oligothiophene. This electron doping accounts for an important enhancement of the photoluminescence intensity up to a factor of nearly six for optimal confinement configuration. This electron transfer shifts the Fermi level, acting on the photoluminescence efficiency. Therefore, thiophene oligomer encapsulation allows modulating the electronic structure and then the optical properties of the hybrid system
    • 

    corecore