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Abstract 

This work shows the application of artificial intelligence (AI) on invasion game tracking data to realize 

a fast (sub-second) and adaptable search engine for sports scenes, scene ratings based on ma-

chine learning (ML) and computer-generated solutions using reinforcement learning (RL). We pro-

vide research results for all three areas. Benefits are expected for accelerated video analysis at 

professional sports clubs. 
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Introduction 

Video analysis of invasion games like soccer, ice hockey, and basketball, despite available software 

tools, is still a quite manual and challenging task, but very important for game preparation & post-

game analysis. Identification of meaningful scenes for trainers, preparation for the playing style of 

opponents, as well as discussing different solutions for certain scenes are repeating tasks that could 

be supported by omnipresent tracking data and the use of machine learning techniques (ML). The 

following sections explain the use of ML for Scene Search, a scheme for Scene Rating, and the use 

of reinforcement learning for Scene Solving, which generates new solutions for scenes played in 

real games never seen before. 

Methods and Results 

Scene Searching is realized with a similarity-based search, that retrieves the most similar scenes to 

a query scene within fractions of a second using deep representation learning (Löffler et al., 2022a) 

and that adapts to expert annotations. 

Fundamental problems with similarity search stem from a lack of available labels and are threefold 

(Löffler et al., 2022a). First, the unordered structure of samples from team sports like football is 

caused by the lack of a generalized role assignment between the two teams. Every player’s position 

may change dynamically throughout the game. This affects the similarity calculation because the 

assignment between players of two scenes is undefined. Second, the high dimensionality of posi-

tional tracking sampled at 25Hz for 23 targets in football, and the combinatorial complexity of pair-

wise computations, limit the scalability of searching with raw samples. 

In our search component, we address the assignment problem by calculating optimal assignments 

between pairs of scenes (𝑆𝑐𝑒𝑛𝑒1, 𝑆𝑐𝑒𝑛𝑒2) with the Hungarian algorithm (Kuhn, 1955). This pro-

duces pairwise optimal assignments of players from one scene to their counterparts in the other 

scene. However, while this necessary step solves the assignment, its computational complexity of 

𝒪(𝑛3) is still infeasible, and the scalability problem even intensifies. 
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Hence, we jointly learn to estimate the assignment problem and a lower dimensional representation 

of the complex raw tracking data to solve the three fundamental problems. We employ Deep Sia-

mese Metric Learning to learn both i) a distance preserving lower-dimensional embedding 𝑓() and 

ii) an estimation of the assignment problem. We use the Euclidean distance 𝑑() as a proxy for 

semantic similarity, since Sha et al. (2016) showed its efficacy despite its apparent simplicity, with 

the Siamese loss that minimizes the difference between the embedding and raw distances: 

 𝐿𝑜𝑠𝑠𝑆𝑖𝑎𝑚𝑒𝑠𝑒(𝑆𝑐𝑒𝑛𝑒1, 𝑆𝑐𝑒𝑛𝑒2)

= (‖𝑓(𝑆𝑐𝑒𝑛𝑒1) − 𝑓(𝑆𝑐𝑒𝑛𝑒2)‖2 − 𝑑(𝑆𝑐𝑒𝑛𝑒1, 𝑆𝑐𝑒𝑛𝑒2))
2 

( 1 ) 

However, we individualize the similarity metric in a second step. Even though the Siamese embed-

ding preserves the Euclidean well and accelerates search by orders of magnitude (Reeb et al., 

2020), we seek to improve upon it. Specifically, the Euclidean distance suffers from the Curse of 

Dimensionality (Bellman, 1961), and in practice does not differentiate semantically, e.g., no 

weighting of ball or player trajectories. We propose to learn a metric from human annotations using 

triplets (Hoffer et al., 2015) of query 𝑆𝑐𝑒𝑛𝑒𝑎, similar 𝑆𝑐𝑒𝑛𝑒𝑝, and dissimilar 𝑆𝑐𝑒𝑛𝑒𝑛. This extends 

our Siamese Network by learning experts’ notions of similarity, which may resemble semantics more 

closely. We implement this cost-effectively by leveraging transfer-learning and furthermore by only 

querying the most informative samples through Active Learning (Löffler et al., 2022b). We fine-tune 

via triplet loss: 

 
𝐿𝑜𝑠𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑡(𝑆𝑐𝑒𝑛𝑒𝑎, 𝑆𝑐𝑒𝑛𝑒𝑝, 𝑆𝑐𝑒𝑛𝑒𝑛)

= 𝑚𝑎𝑥 (‖𝑓(𝑆𝑐𝑒𝑛𝑒𝑎) − 𝑓(𝑆𝑐𝑒𝑛𝑒𝑝)‖2

− ‖𝑓(𝑆𝑐𝑒𝑛𝑒𝑎) − 𝑓(𝑆𝑐𝑒𝑛𝑒𝑛)‖2 + 1, 0) 

( 2 ) 

Despite inconsistent annotations from noisy oracles, we see an increase in triplet accuracy of 5-

10% triplet accuracy after only 20 queries. 

Scene Rating of soccer scenes is done using three method types: i) distance functions such as the 

distance to the goal and the distance won (between the last and the first frame). ii) formation spread, 

average distance of players to the formation’s center of mass. This is based on the tactical idea, 

that an increased distance between defenders makes it harder to defend and an attacking team 

must position itself to spread the opposing formation (Rafelt, 2021). iii) pressure metric, as proposed 

by Link et al. (2016). In addition, we implement an Expected Goals (xG) metric based on the distance 

to goal (Altman, 2015), and the pitch control metric (Fernandez et al., 2018).  

We provide statistical breakdowns of scenes for professional soccer analysts. We can choose 

scenes in two different ways. The first lists 5s scenes that are pre-filtered scenes to satisfy the 

criteria that one team possesses the ball for at least 90% of the time. Alternatively, scenes can be 

selected before or after an annotated event (1s to 10s). We provide visualizations of the scene and 

rating, and the video clip. In Fig. 1, we show trajectories of players and ball (a), and radar plot with 
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rating metrics (b). In addition, we show (animated dynamic) plots of the scene and an animation of 

the pitch control metric (c). 

These animations can be played forwards and backward to allow analysts to gain insight into the 

play of either the attacking or defending team. 

   

(a) (b) (c) 

Fig. 1 (a) Scene trajectory plot; (b) Radar chart with rating; (c) Pitch control. 

It is planned to extend the rating to data-driven models for the prediction (in the next five seconds) 

of box entry, shot on goal, and scoring for attacking scenes. 

Scene Solving is realized using the Google Research Football Environment (Kurach et al., 2020) 

and Reinforcement Learning (RL) techniques to generate new solutions from real scenes. The gen-

erated artificial solutions can then be sorted by different rating criteria described above, to identify 

valuable new proposals. The RL-agent consists of a Multilayer-Perceptron (MLP) of two layers 

[512,512], trained for 15 million steps using Proximal Policy Optimization (PPO) (Schulman et al., 

2017). The state is represented using a 169-dimensional vector (see Fig 2) and extends previous 

work by adding relative positions from the active player to other entities. 

 

Fig. 2 State space representation 

In soccer not losing the ball is of utmost importance. When risky actions are taken, the chance of 

losing the ball increases. Hence, we made the agent risk aware by defining constraints whenever 

the agent is in danger of losing the ball. Our risk estimator uses past transitions generated from the 

environment. The risk estimator allows the user of our application to tune the willingness of the 

playing agent to take a risk in its solutions. Risk-tolerant agents solutions advance faster, but the 

agents also lose the ball more easily, leading to counterattacks. Risk-averse agents focus on keep-

ing the ball in possession which can be helpful if the team is already winning the match. 

In Fig 3, we show the average safety value for passing and directional actions. Passing actions carry 

a higher risk than directional actions, especially when the agent is closer to the opponent’s goal. 

Consequently, risk-averse agents do not pass when they are close to the goal, whereas risk-tolerant 

agents may perform a pass in such situations. 
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Conclusion 

We think that a fast and adaptable search engine based on scene ratings and tracking data in com-

bination with advances in computer aided scene solving will help to make video analysis more ef-

fective and may lead to new playing strategies. 

  

(a) (b) 

Fig. 3 (a) Safety values of directional actions; (b) Safety values of passing actions. 

Conflict of interest We declare no conflicts of interest. 

Funding We would like to acknowledge support for this project from the Bavarian Ministry of Economic Af-

fairs, Infrastructure, Energy and Technology as part of the Center for Analytics-Data-Applications (ADA) 

within the framework of “BAYERN DIGITAL II”. 

References 

D. Altman. (2015). Beyond Shots: A new approach to quantifying scoring opportunities. OptaProForum. 

https://northyardanalytics.com/Dan-Altman-NYA-OptaPro-Forum-2015.pdf 

J. Fernandez, & L. Bornn. (2018). Wide Open Spaces: A statistical technique for measuring space creation 

in professional soccer. MIT Sloan Sports Conference. 

D. Link, S. Lang, & P. Seidenschwarz. (2016). Real Time Quantification of Dangerousity in Football Using 

Spatiotemporal Tracking Data. PLoS ONE 11(12). 

M. Rafelt. (2021, March 27). Wie Guardiolas 3-2-2-3 (letztlich) das Abwehrspiel löst. Spielverlagerung.de. 

https://spielverlagerung.de/2021/03/27/wie-guardiolas-3-2-2-3-letztlich-das-abwehrspiel-loest/ 

Löffler, C., Reeb, L., Dzibela, D., Marzilger, R., Witt, N., Eskofier, B. & Mutschler, C. (2022a). Deep Siamese 

Metric Learning: A Highly Scalable Approach to Searching Unordered Sets of Trajectories. ACM Transac-

tions of Intelligent Systems and Technology, 13(1), Article 6.  

Sha, L., Lucey, P., Yue, Y., Carr, P., Rohlf, C. & Matt hews, I. (2016). Chalkboarding: A New Spatiotemporal 

Query Paradigm for Sports Play Retrieval. 21st International Conference on Intelligent User Interfaces, 

pp. 336–347. 

Reeb, L., Dzibela, D., Marzilger, R., & Witt, N. (2020) Effiziente Suche und Bewertung von Szenen in Spiel-

sportarten. spinfortec digital, pp. 16-17. 

Bellman, R. (1961). Adaptive Control Processes. A Guided Tour. Princeton University Press, 255. 

Hoffer, E. & Nir A. (2015). Deep Metric Learning Using Triplet Networks. Similarity-Based Pattern Recognition 

SIMBAD. Lecture Notes in Computer Science, 9370. 



spinfortec2022 35 
 

 

Löffler, C., Fallah, K., Fenu, S., Zanca, D., Eskofier, B., Rozell, C. J., Mutschler, C. (2022b) Active Learning 

of Ordinal Embeddings: A User Study on Football Data. ArXiv. 2207.12710  

Kuhn, H. (1955). The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly, 

2, pp. 83-97. 

Kurach, K., Raichuk, A., Stanczyk, P., Zajac, M., Bachem, O., Espeholt, L., Riquelme, C., Vincent, D., Michal-

ski, M., & Bousquet, O. (2020). Google research football: A novel reinforcement learning environment. 

AAAI Conference on Artificial Intelligence, 34(4), pp. 4501–4510. 

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algo-

rithms. ArXiv. 1707.06347 

  


	Sports Scene Searching, Rating & Solving using AI
	Abstract
	Introduction
	Methods and Results
	Conclusion
	References

