449 research outputs found

    Propagation of Sensor Noise in Navigation Equations and High Accuracy Dynamic Calibration of Sensors

    Get PDF
    Accurate navigation in GPS denied locations is extremely hard to achieve. Inertial Navigation Systems (INS) are currently the only reasonable onboard alternative to GPS but INS has error terms that grow very quickly. Even current high-end INSs have an error exceeding one km after only ten minutes of use. A high-accuracy INS would be very useful in underwater applications, spacecraft and extraterrestrial rovers, and military applications. This thesis seeks to enable such Inertial Navigation Systems

    Threats to Internal Validity in Multiple-Baseline Design Variations

    Get PDF
    Multiple baseline designs—both concurrent and nonconcurrent—are the predominant experimental design in modern applied behavior analytic research and are increasingly employed in other disciplines. In the past, there was significant controversy regarding the relative vigor of concurrent and nonconcurrent multiple baseline designs. The consensus in recent textbooks and methodological papers is that nonconcurrent designs are less rigorous than concurrent designs because of their presumed limited ability to address the threat of coincidental events (i.e., history). This skepticism of nonconcurrent designs stems from an emphasis on the importance of across-tier comparisons and relatively low importance placed on replicated within-tier comparisons for addressing threats to internal validity and establishing experimental control. In this article, we argue that the primary reliance on across-tier comparisons and the resulting deprecation of nonconcurrent designs are not well-justified. In this article, we first define multiple baseline designs, describe common threats to internal validity, and delineate the two bases for controlling these threats. Second, we briefly summarize historical methodological writing and current textbook treatment of these designs. Third, we explore how concurrent and nonconcurrent multiple baselines address each of the main threats to internal validity. Finally, we make recommendations for rigorous use, reporting, and evaluation of multiple baseline designs

    Ex Vivo Porcine Arterial and Chorioallantoic Membrane Acoustic Angiography Using Dual-Frequency Intravascular Ultrasound Probes

    Get PDF
    The presence of blood vessels within a developing atherosclerotic plaque has been shown to be correlated to increased plaque vulnerability and ensuing cardiac events, however, detecting coronary intraplaque neovascularizations poses a significant challenge in the clinic. In this paper, we demonstrate in vivo a new intravascular ultrasound imaging method using a dual-frequency transducer to visualize contrast flow in microvessels with high specificity. This method uses a specialized transducer capable of exciting contrast agents at a low frequency (5.5 MHz) while detecting their nonlinear superhamonics at a much higher frequency (37 MHz). In vitro evaluation of the approach was performed in a microvascular phantom to produce 3D renderings of simulated vessel patterns and to determine image quality metrics as a function of depth. Furthermore, the ability of the system to detect microvessels is demonstrated both ex vivo using porcine arteries and in vivo using the chorioallantoic membrane of a developing chicken embryo with optical confirmation. Dual-frequency contrast specific imaging was able to resolve vessels of a similar size to those found in vulnerable atherosclerotic plaques at clinically relevant depths. The results of this study adds growing support for further evaluation and translation of contrast specific imaging in intravascular ultrasound for the detection of vulnerable plaques in atherosclerosis

    Soy Phosphatidylinositol–Containing Lipid Nanoparticle Prolongs the Plasma Survival and Hemostatic Efficacy of B-domain–Deleted Recombinant Canine Factor VIII in Hemophilia A Dogs

    Get PDF
    Soy phosphatidylinositol (PI) containing lipid nanoparticles prolong plasma survival, improve hemostatic efficacy, and decrease immunogenicity of human B-domain deleted Factor VIII (BDD FVIII) in Hemophilia A (HA) mice. We hypothesize that PI associated BDD FVIII is more potent than the free protein, and using mathematical modeling, have projected that PI associated BDD FVIII could be used for once-weekly prophylactic dosing in patients. To facilitate translation to the clinic, comparative plasma survival and ex vivo efficacy of PI associated recombinant canine FVIII (PI-rcFVIII) were evaluated in HA dogs. 2 HA dogs were administered a 50 U/kg iv dose of free or PI-rcFVIII. rcFVIII activity measurements and ex vivo efficacy analyses like whole blood clotting time (WBCT) and thromboelastography (TEG) were conducted on recovered plasma and whole blood samples. PI association decreased clearance (~25%) and increased plasma exposure (~1.4 fold) of rcFVIII. PI-rcFVIII treated animals had prolonged improvements in WBCTs and TEG parameters compared to free rcFVIII treated animals. Since rcFVIII is a BDD form of FVIII, these studies provide proof-of-principle that observations with human BDD FVIII in mice translate to higher animal species. Additionally, PI-rcFVIII has potential applications in canine HA management and as a bypass therapy in inhibitor-positive HA patients

    Porcine and Canine von Willebrand Factor and von Willebrand Disease: Hemostasis, Thrombosis, and Atherosclerosis Studies

    Get PDF
    Use of animal models of inherited and induced von Willebrand factor (VWF) deficiency continues to advance the knowledge of VWF-related diseases: von Willebrand disease (VWD), thrombotic thrombocytopenic purpura (TTP), and coronary artery thrombosis. First, in humans, pigs, and dogs, VWF is essential for normal hemostasis; without VWF bleeding events are severe and can be fatal. Second, the ADAMTS13 cleavage site is preserved in all three species suggesting all use this mechanism for normal VWF multimer processing and that all are susceptible to TTP when ADAMTS13 function is reduced. Third, while the role of VWF in atherogenesis is debated, arterial thrombosis complicating atherosclerosis appears to be VWF-dependent. The differences in the VWF gene and protein between humans, pigs, and dogs are relatively few but important to consider in the design of VWF-focused experiments. These homologies and differences are reviewed in detail and their implications for research projects are discussed. The current status of porcine and canine VWD are also reviewed as well as their potential role in future studies of VWF-related disorders of hemostasis and thrombosis

    Detection and molecular characterisation of Cryptosporidium parvum in British European hedgehogs (Erinaceus europaeus)

    Get PDF
    Surveillance was conducted for the occurrence of protozoan parasites of the genus Cryptosporidium in European hedgehogs (Erinaceus europaeus) in Great Britain. In total, 108 voided faecal samples were collected from hedgehogs newly admitted to eight wildlife casualty treatment and rehabilitation centres. Terminal large intestinal (LI) contents from three hedgehog carcasses were also analysed. Information on host and location variables, including faecal appearance, body weight, and apparent health status, was compiled. Polymerase Chain Reaction (PCR) targeting the 18S ribosomal RNA gene, confirmed by sequencing, revealed an 8% (9/111) occurrence of Cryptosporidium parvum in faeces or LI contents, with no significant association between the host or location variables and infection. Archived small intestinal (SI) tissue from a hedgehog with histological evidence of cryptosporidiosis was also positive for C. parvum by PCR and sequence analysis of the 18S rRNA gene. No other Cryptosporidium species were detected. PCR and sequencing of the glycoprotein 60 gene identified three known zoonotic C. parvum subtypes not previously found in hedgehogs: IIdA17G1 (n=4), IIdA19G1 (n=1) and IIdA24G1 (n=1). These subtypes are also known to infect livestock. Another faecal sample contained C. parvum IIcA5G3j which has been found previously in hedgehogs, and for which there is one published report in a human, but is not known to affect livestock. The presence of zoonotic subtypes of C. parvum in British hedgehogs highlights a potential public health concern. Further research is needed to better understand the epidemiology and potential impacts of Cryptosporidium infection in hedgehogs

    ARFI Ultrasound for In Vivo Hemostasis Assessment Postcardiac Catheterization, Part I: Preclinical Studies

    Get PDF
    In this second of a two part series, we present pilot clinical data demonstrating Acoustic Radiation Force Impulse (ARFI) ultrasound for monitoring the onset of subcutaneous hemostasis at femoral artery puncture sites (arteriotomies), in vivo. We conducted a randomized, reader-blinded investigation of 20 patient volunteers who underwent diagnostic percutaneous coronary catheterization. After sheath removal (6 French), patients were randomized to treatment with either standard of care manual compression alone or, to expedite hemostasis, manual compression augmented with a p-GlcNAc fiber-based hemostatic dressing (Marine Polymer Technologies, Danvers MA). Concurrent with manual compression, serial ARFI imaging began at the time of sheath removal and continued every minute for 15 min. Serial data sets were processed with custom software to (1) estimate the time of hemostasis onset, and (2) render hybrid ARFI/B-Mode images to highlight displacements considered to correspond to extravasted blood. Images were read by an observer blinded to the treatment groups. Average estimated times to hemostasis in patient volunteers treated with manual compression alone (n = 10) and manual compression augmented by hemostatic dressing (n = 9) were, respectively, 13.00 ± 1.56 and 9.44 ± 3.09 min, which are statistically significantly different (p = 0.0065, Wilcoxon two-sample test). Example images are shown for three selected patient volunteers. These pilot data suggest that ARFI ultrasound is relevant to monitoring subcutaneous bleeding from femoral arteriotomies clinically and that time to hemostasis was significantly reduced by use of the hemostatic dressing

    Translational Data from Adeno-Associated Virus-Mediated Gene Therapy of Hemophilia B in Dogs

    Get PDF
    Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches

    Academic Senate - Meeting Minutes, 4/18/2017

    Get PDF
    <p>All values are presented with SD. Differences between <i>LDLR−/−</i> and the other two genotypes are significant where indicated, ANOVA: *p<0.05, **p<0.01.</p
    corecore