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Abstract

The presence of blood vessels within a developing atherosclerotic plaque has been shown to be 

correlated to increased plaque vulnerability and ensuing cardiac events, however, detecting 

coronary intraplaque neovascularizations poses a significant challenge in the clinic. In this paper, 

we demonstrate in vivo a new intravascular ultrasound imaging method using a dual-frequency 

transducer to visualize contrast flow in microvessels with high specificity. This method uses a 

specialized transducer capable of exciting contrast agents at a low frequency (5.5 MHz) while 

detecting their nonlinear superhamonics at a much higher frequency (37 MHz). In vitro evaluation 

of the approach was performed in a microvascular phantom to produce 3D renderings of simulated 

vessel patterns and to determine image quality metrics as a function of depth. Furthermore, the 

ability of the system to detect microvessels is demonstrated both ex vivo using porcine arteries and 

in vivo using the chorioallantoic membrane of a developing chicken embryo with optical 

confirmation. Dual-frequency contrast specific imaging was able to resolve vessels of a similar 

size to those found in vulnerable atherosclerotic plaques at clinically relevant depths. The results 

of this study adds growing support for further evaluation and translation of contrast specific 

imaging in intravascular ultrasound for the detection of vulnerable plaques in atherosclerosis.
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Introduction

Cardiovascular disease is the leading cause of death globally, responsible for over 17.5 

million deaths in 2014 (Mendis 2015). Atherosclerosis is a deadly and progressive disease 

which initiates with the formation of fatty streaks as the intimal layer of the arterial wall 

thickens with lipid accumulation (Davies et al. 1988). As lipid-filled macrophages continue 

to collect, smooth muscle cells within the fatty streak may undergo apoptosis, producing 

further macrophage accumulation and promoting the transition from fatty streak to 

atherosclerotic plaque (Kockx et al. 1998). In healthy arterial walls, the outer layers are 

diffusion-limited and are supplied with nutrients and oxygen by a network of vessels known 

as the vasa vasorum arising in the adventitial layer. As atherosclerotic plaques develop, vasa 
vasorum extend through the media and intimal layers into the plaques themselves (Barger et 

al. 1984). These intraplaque vessels often have incomplete endothelial linings and lack 

smooth muscle cell support, making them prone to hemorrhage within the plaque, which is 

associated with advanced disease progression as the plaque further destabilizes (Virmani et 

al. 1998; Kolodgie et al. 2003). With additional plaque buildup, a state of arterial stenosis 

and ischemia develops, which is a more advanced stage of disease commonly associated 

with increased symptoms and complications (Naghavi et al. 2003). Prior to these observable 

symptoms, plaque rupture and ensuing cardiac events occur infrequently and seemingly 

asymptomatically, further obscuring disease progression (Jackson 2011). Intravascular 

ultrasound (IVUS) screenings are used to quantify disease progression using morphological 

features such as intima-media thickness (Salonen and Salonen 1993; Amato et al. 2007) or 

minimum lumen diameter measurements (Abizaid et al. 1999), which aids in designing 

treatment plans tailored to individuals. Even so, previous studies indicate that a diagnosis 

based solely on plaque morphology may lack the ability to discern between asymptomatic 

fibroatheroma and those prone to rupture (Naghavi et al. 2003; Stone et al. 2011). 

Additionally, histological data has confirmed that vulnerable plaques exhibit enhanced vasa 
vasorum proliferation, intraplaque neovascularizations, or intraplaque hemorrhages (Doyle 

and Caplice 2007; Mulligan-Kehoe 2010; Schinkel et al. 2010), potentially providing an 

alternative means for assessing plaque vulnerability through the detection of intraplaque 

blood flow. Ultrasound contrast agents offer an attractive solution for imaging both 

morphology and function in assessment of atherosclerosis (Feinstein 2006; Magnoni et al. 

2009; ten Kate et al. 2010).

Microbubble contrast agents (MCAs) are micron-sized gas bubbles that provide enhanced 

acoustic scattering due to the large mismatch in acoustic impedance between the gas core 

and the surrounding media. MCAs are usually administered in diagnostic procedures to 

enhance backscatter from blood and aid in identification of blood vessels. Contrast agents 

have been imaged selectively using IVUS transducers by exploiting their nonlinear behavior 

through a variety of methods including, but not limited to, pulse inversion (Goertz et al. 

2006; Maresca et al. 2013), subharmonic imaging (Goertz et al. 2007), chirp reversal 

(Maresca et al. 2012; Maresca et al. 2014), and radial modulation (Yu et al. 2014). While 

some techniques utilize the second harmonic signal, it has been noted that contrast imaging 

using the second harmonic can be nonspecific to MCAs since tissues also generate second 

harmonics through nonlinear wave propagation (Thomas and Rubin 1998; Duck 2002; 
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Goertz et al. 2005). As a result, second harmonic imaging of MCAs can result in loss of 

specificity in contrast images if measures are not taken to suppress tissue-derived harmonics.

Alternatively, higher order superharmonic imaging of ultrasound contrast agents, defined 

here as imaging which relies on receiving echoes at frequencies typically 4–6 times higher 

than the transmitted frequency, provides high resolution and high contrast signal to noise in 

acquired images. In 2002, Bouakaz et al showed that contrast-specific superharmonic 

imaging produced contrast-to-tissue ratios in excess of 40 dB when using a prototype dual-

frequency phased array capable of transmitting at 0.8 MHz and receiving the 3–5th 

harmonics using elements operating at a center frequency of 2.8 MHz (Bouakaz et al. 

2002b). Later, this same approach was extended to a patient study with similar results to 

demonstrate the feasibility of superharmonic imaging in the clinic (Bouakaz et al. 2003). 

Images acquired using this contrast imaging method can provide detailed maps of contrast 

flow in the microvasculature, thus leading to the description ‘acoustic angiography’ 

(Gessner et al. 2013). Our group has previously developed single element, dual-frequency 

(DF) IVUS transducers capable of detecting higher order harmonics to produce images with 

excellent contrast specificity (Ma et al. 2014) as well as reported transducer and acoustic 

factors that influence the quality of superharmonic contrast images (Lindsey et al. 2014; 

Lindsey et al. 2015a; Lindsey et al. 2015b; Ma et al. 2015a). In this article, we present 

contrast specific in vivo superharmonic imaging using custom dual-frequency intravascular 

(DF-IVUS) transducers. The described experiments evaluate and measure the spatial 

resolution, sensitivity, and specificity of this intravascular approach for imaging 

microvessels, in order to establish the feasibility of DF-IVUS superharmonic imaging of 

intraplaque vasa vasorum.

Methods

The Dual-Frequency Probe and Imaging System

Contrast imaging at higher harmonics can be advantageous for achieving higher specificity 

to contrast agents. Harmonic imaging has typically been performed within the bandwidth of 

a single transducer, allowing imaging at twice the transmitted frequency at the upper end of 

the available bandwidth. Contrast imaging at higher harmonics requires transducers with 

even broader bandwidth. For example, performing 5th harmonic imaging using single 

element transducers would require a −6 dB fractional bandwidth of at least 133% which is 

difficult to achieve with piezoelectric materials. However, using multiple elements with 

separate frequencies allows the transducer to cover a broad range of frequencies to make 

higher order super-harmonic imaging feasible (Martin et al. 2014). As a result, the study was 

conducted using a custom 2-element, layered configuration IVUS transducer which has been 

described previously in detail (Ma et al. 2014; Ma et al. 2015a). Briefly, both elements were 

composed of lead magnesium niobate-lead titanate (PMN-PT) single crystal with different 

aperture dimensions oriented in a stacked configuration such that the low frequency element 

is placed behind the high frequency element.

The transducer forms images of microbubbles selectively by using an unfocused low 

frequency element (fc = 5.5 MHz, fBW = 50.0%, 0.6 mm laterally by 3 mm elevationally) to 

emit excitatory pulses for generating nonlinear echoes from MCAs while the high frequency 
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element (fc = 37.2 MHz, fBW = 28.5%, 0.6 mm laterally by 0.5 mm elevationally) detects 

only the higher harmonics produced by microbubbles. Thus, images formed by operating the 

transducer in dual-frequency mode will preferentially image nonlinear targets that produce 

higher order harmonics like MCAs. The two elements are acoustically isolated to prevent 

undesirable coupling using a frequency selective isolation layer (Azuma et al. 2010; Ma et 

al. 2015b). Conventional B-mode IVUS imaging was performed for comparison by using the 

high frequency element in pulse-echo operation.

Signals were acquired from the dual-frequency probe using a custom imaging system 

capable of volumetric acquisitions (Figure 1). A programmable microcontroller was used to 

mechanically rotate the probe using a stepper motor having 400 discrete angular positions 

per revolution (angular step size, Δθ = 0.9°) and images were acquired at a pulse repetition 

rate of 100 Hz. The motor and transducer assembly were mounted to a three-axis computer 

controlled motion stage (Newport XPS, Irvine, CA, USA) which controlled transducer 

pullback in order to collect images of the entire volume for 3D rendering. The transducer 

was operated in either DF mode for contrast detection or B-mode for conventional pulse-

echo IVUS imaging. In DF mode, the low frequency element was excited using a 5.5 MHz, 

50% bandwidth Gaussian enveloped pulse from an arbitrary function generator (AFG3101, 

Tektronix, Inc., Beaverton, OR, USA). The pulse was amplified to 275 Vpp using a 60 dB 

radiofrequency amplifier (A-500, Electronic Navigation Industries, Rochester, NY, USA) in 

order to generate 1.2 MPa of peak rarefractional pressure at a depth of 2 mm in water, which 

was measured using a needle hydrophone (HNA-0400, Onda Corp., Sunnyvale, CA, USA) 

(Figure 2). The transmission pressure was selected in order to produce detectable nonlinear 

responses above the 4th harmonic using the high frequency element, similar to reported 

observations in earlier prototypes (Ma et al. 2014). A beam map of the peak rarefractional 

pressure from the transmit element was performed by scanning the hydrophone in a water 

bath using an automated script (Labview, National Instruments, Austin, TX, USA). The 

received high frequency signal was amplified by 12 dB using a low noise amplifier 

(BR-640A, Ritec, Warwick, RI, USA) before being digitized at a sampling rate of 100 MHz 

(PDA14, Signatec, Lockport, IL, USA) for offline post-processing. B-mode imaging was 

performed using a commercial pulser-receiver (5900PR, Panametrics Inc., Waltham, MA, 

USA) operating in pulse-echo mode on the high frequency element in order to provide a 

comparison of imaging modes. Raw signals were first filtered using a zero-phase 8th order 

Butterworth bandpass filter (33–41 MHz) before being envelope-detected and scan-

converted to polar coordinates for display. After image processing each individual slice in 

the volume (Matlab, The Mathworks, Natick, MA, USA), three-dimensional filtering with a 

Gaussian kernel (0.59 mm isotropic variance) was applied to smooth the dataset. Finally, the 

entire volume was then exported to ImageJ (National Institute of Health, Bethesda, MD, 

USA) where maximum intensity projections were performed to visualize the 3D volume. 

Statistical significance between computed image metrics were determined with two-sided t-
tests at a significance level of p < 0.05.

Microbubble Formulation and Preparation

Phospholipid shelled microbubble suspensions were formulated as previously described 

(Puett et al. 2014) and aliquoted into 3 mL glass vials sealed with a butyl rubber stopper. A 
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needle was inserted into the headspace of the vial and the gas was exchanged with an inert 

perfluorocarbon (decafluorobutane, Fluoromed, Round Rock, TX, USA) to form the gaseous 

core of the MCA. Mechanical agitation using a commercial vial agitator (VialMix, Lantheus 

Medical Imaging, North Billerica, MA, USA) was performed for 45 s to encapsulate the 

perfluorocarbon, producing a polydisperse microbubble population. The microbubble 

population concentration and diameters were measured using a light obscuration and 

scattering method (AccuSizer 780, Particle Sizing Systems, Santa Barbara, CA, USA). 

Prepared microbubble populations had a number weighted mean diameter of 1.08 µm 

measured between 0.5 to 20 µm with 95% of the measured population having a diameter 

below 1.97 µm. In vitro and ex vivo contrast experiments were conducted after diluting the 

stock concentration of microbubbles with distilled water to 108 MCA/mL, while in vivo 
experiments used undiluted concentrations of 1010 MCA/mL.

Vasa Vasorum Phantom

In vitro phantom experiments were conducted in order to quantify differences between 

conventional B-mode and contrast specific dual-frequency images of MCAs as a function of 

depth in an attenuating medium. A gelatin tissue-mimicking phantom using graphite 

scatterers was made to simulate arterial tissue. The phantom formulation was adapted from a 

previously described method reported elsewhere (Madsen et al. 1978). Amorphous graphite 

sized between 0.75–5 µm (Superior Graphite, Chicago, IL, USA) was used to simulate 

backscattering from tissue and was added at a concentration of 32 mg/mL for attenuation 

control. Attenuation of the phantom material at applicable frequencies was measured by 

comparing pressure reduction after inserting phantom material between a piston transducer 

and hydrophone. Cellulose tubes with an inner diameter of 200 µm were fixed in the 

phantom material to simulate larger vessels of the vasa vasorum. The vasa vasorum of 

human carotid plaques range from 1.6–199.7 µm, with a mean diameter of ~40 µm, while 

the diameter reported for porcine coronary vasa vasorum ranges between 70–160 µm (Kwon 

et al. 1998; Sluimer and Daemen 2009). In order to determine the imaging metrics as a 

function of depth, the microcellulose tube was angled relative to the central axis of the 

vessel lumen so that the amount of phantom material between the contrast-filled vessel and 

the transducer varied during a volumetric scan (Figure 3). Additional phantoms containing 

tube networks were fabricated in order to evaluate 3D imaging performance in a more 

complex environment similar to that encountered in vivo. Diluted MCAs were injected into 

the phantom at a mean velocity of 17.7 mm/s using a calibrated syringe pump (PHD2000, 

Harvard Apparatus, Holliston, MA, USA). At this rate, the volumetric flow approximates 

human in vivo conditions of a vessel of approximately the same diameter (Riva et al. 1985). 

The central lumen containing the transducer was 4.5 mm in diameter and filled with distilled 

water during imaging. This simulates clinical procedures in which a bolus of saline is 

injected to clear the lumen during the time of imaging to avoid shadowing from microbubble 

attenuation within the parent artery. The approach is analogous to that described for optical 

coherence tomography where saline boluses are used during percutaneous interventions to 

clear red blood cells so that the vessel endothelium may be imaged (Jang et al. 2002; Kubo 

et al. 2007; Given et al. 2013).
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Ex Vivo Porcine Vessel Imaging

While phantoms provide a useful tool for quantifying DF imaging performance under highly 

controlled conditions, imaging using an ex vivo model can be used to test the feasibility of 

the approach when imaging through arterial tissue. Mesenteric arteries from Rapacz familial 

hypercholesterolemic pigs (RFH) were used as a surrogate for human arteries, and were 

donated by the Francis Owens Blood Research Lab (FOBRL, Chapel Hill, NC, USA). RFH 

pigs are genetically predisposed to develop atheromata at a younger age and these 

atherosclerotic lesions closely mimic the pathology found in humans. The mutation that 

results in familial hypercholesterolemia is a missense mutation (C253 → T253) resulting in a 

transcription substitution (R94 → C94) of a region of the low density lipoprotein receptor 

that is analogous to exon 4 in the human ligand binding domain (Hasler-Rapacz et al. 1994; 

Hasler-Rapacz et al. 1998; Grunwald et al. 1999). RFH pigs have been used previously to 

evaluate contrast enhancement methods for detecting vasa vasorum during the progression of 

atherosclerosis (Schinkel et al. 2010). All arteries were collected within 1 hour after 

euthanasia and stored immediately in phosphate buffered saline (PBS) solutions at −20°C 

until the time of the experiment. Previous work involving human coronary arteries have 

noted that fixing tissue in formalin significantly alters the acoustic properties of specimens, 

but freezing and thawing have not produced significant changes in acoustic properties 

(Gussenhoven et al. 1989; Lockwood et al. 1991). Specimens were thawed, sutured, and 

attached to a custom fixture to allow the vessel to be stretched to approximately 1.5 times 

the resected length to approximate in vivo conditions (Han and Ku 2001, Figure 4). A 200 

µm diameter tube was placed outside the artery to simulate a deep vasa vasorum vessel and 

contrast agents were pumped through the vessel at the same rate used in the phantom study 

using the same equipment. The artery was submerged in a tank filled with PBS, and both B-

mode and DF mode pullbacks were acquired. Arteries collected from 3 different animals 

were used in this study. All pigs were handled in strict accordance with the USDA 

regulations and the standards described in the 2011 Guide for the Care and Use of 

Laboratory Animals (NRC 2011). All procedures and protocols were in accordance with 

institutional guidelines and approved by the University of North Carolina Institutional 

Animal Care and Use Committee (IACUC).

Chorioallantoic Membrane In Vivo Model

In vivo validations of the approach to selectively image MCAs were performed in 

developing chicken embryos as a surrogate for vasa vasorum. The chorioallantoic membrane 

(CAM) of developing chicken embryos is composed of a dense capillary network cradled in 

a sheet of connective tissue and is the primary site for cellular exchange of respiratory gases 

and metabolic wastes. Due to the low optical scattering of the albumen and the direct 

visualization of the exposed vasculature, the embryo’s developing circulatory system can be 

imaged and studied optically after removal of the shell. Vessels diameters within the CAM 

are similar to sizes of human vasa vasorum lumens reported previously (43.4 ± 47.4 µm 

diameters, mean ± s.d.), making it a good model for evaluating the sensitivity of the imaging 

system to detect small vasculature (Sluimer and Daemen 2009).

Fertilized chicken eggs (broiler line, Ross 708) were collected from a local poultry farm 

(North Carolina State Chicken Educational Unit, Raleigh, NC, USA) and refrigerated at 6°C 
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upon arrival for 3–7 days until incubation. Eggs were first incubated in ovo at 37.5°C with 

70% relative humidity for 3 days, turning every 4 hours using an automated egg rocker 

(Model 4200/3200, Farm Innovators, Plymouth, IN, USA). Eggs were then cracked and 

explanted into disposable holders as described by Schomann, et al. (Schomann et al. 2013), 

and incubated for 14 days in a humidified incubator at 37.5°C, 70% humidity, and 2.0% CO2 

(NAPCO 8000 Series, Thermo Scientific, Waltham, MA, USA). Chicken embryo 

morphology was classified at the time of imaging according to the Hamburger and Hamilton 

criteria, with the majority of embryos being classified as HH39-40. The vitelline vein was 

cannulated to allow the injection of MCAs at a concentration of 1010 MCA/mL at a flow rate 

of 1.0 mL/hr using a syringe pump. A continuous infusion of contrast agents was 

administered during the entire imaging session. The CAM was prepared for imaging by 

coupling the transducer to the structure with 37°C phosphate buffered saline.

The intravascular ultrasound probe was positioned adjacent to the CAM and a volumetric 

acquisition was performed 2 minutes after starting the flow of contrast (Figure 5). Image 

slices orthogonal to the direction of transducer pullback were acquired at 200 µm intervals 

while operating in DF mode for contrast specific imaging. Conventional B-mode and DF 

mode volumetric scans were acquired both before and after administration of MCAs for 

comparison. Additionally, contrast infusion was monitored by acquiring volume scans in DF 

mode at 2 minute intervals for a total 12 minutes. Photographs of the CAM corresponding to 

the region that was scanned were taken to provide an optical reference to measure vessel 

diameters. 11 embryos were imaged. Photographs were analyzed in ImageJ to measure the 

width of the vessels within the imaging region.

Results

Field Profile During Transmission and Received Spectra from MCA

The transmission profile of the low frequency element was recorded using a needle 

hydrophone positioned in a water bath in order to determine spatial variation of the 

excitatory signal for the custom IVUS transducer. The 5.5 MHz element was capable of 

producing 1.2 MPa on-axis at a range of 2 mm from the surface of the transducer (Figure 6). 

Hydrophone measurements indicate that the beam remained collimated at a depth of 7.4 mm 

where the pressure dropped −6 dB relative to the peak (600 kPa). Field II (Jensen and 

Svendsen 1992; Jensen 1996) was used to simulate the pressure field produced by the low 

frequency element to compare the measured field to ideal results (Figure 6b). While 

simulated and measured results show good agreement, some off-axis energy deposition 

occurs that was not predicted by the simulation. However, these off-axis energy levels are 

located at angles where the receive element is highly insensitive making undesirable effects, 

such as clutter, which is less of an issue when operating in DF mode. For reference, a 

contour is drawn in Figure 6 to approximate the region of highest microbubble destruction 

and loss of echogenicity where the transmitted waveform exceeds a mechanical index (MI) 

of 0.20. This MI corresponds to the microbubble fragmentation threshold for the type of 

microbubbles used in this study (Lindsey et al. 2015a).
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Three Dimensional Renderings of Microvascular Phantoms

Three dimensional imaging was performed on several phantoms in order to compare B-

mode with DF mode contrast imaging (Figure 7). Conventional B-mode images were unable 

to differentiate contrast-enhanced microvessels from surrounding phantom tissue. In 

comparison, DF images were highly selective to detecting signal only from regions 

containing contrast agents. In light of these results, quantitative image analysis was 

performed as a function of depth into tissue for both B-mode and DF mode operation of this 

transducer.

IVUS pullbacks were performed using a 200 µm diameter tube embedded in a graphite 

phantom at varying depths. Prior to contrast administration, baseline scans of both imaging 

modes were performed to provide a reference point for imaging improvement after MCAs 

were added. Contrast-to-noise ratios (CNR), contrast-to-tissue ratios (CTR), and tissue-to-

noise ratios (TNR) were calculated from images by segmenting regions of interest (ROI) 

corresponding to MCAs for contrast measurements, water for noise measurements, or 

phantom material for tissue measurements (Goertz et al. 2007). Power estimates from these 

regions were calculated from the square of the radio-frequency (RF) lines. Because of the 

radial symmetry of our phantoms, ROIs were rotated about the transducer to ensure the 

compared locations were calculated at the same depths using the same number of pixels to 

calculate the average (Figure 8). Centroids of the ROIs were calculated and used to 

determine the radial distance from the aperture of the transducer. Results of the analysis 

were grouped according to distance with bin sizes of 1.5 mm ranging from 2.5 to 10 mm. 

Student’s t-tests (α = 0.05) show that CNR was non-zero for both imaging modes at depths 

below 7.0 mm. Paired testing between the imaging modes indicate that B-mode images had 

a statistically higher CNR (7.36 vs 2.35 dB at 3.25 mm), however, CTR and TNR 

calculations suggest that this enhancement is not specific to MCAs alone. At all tested 

depths, B-mode CTR was statistically zero while DF images had non-zero CTRs of 1.00 dB 

at 6.25 mm and up to 1.75 dB at 4.75 mm. CTR values using DF images were fundamentally 

limited by low CNR of the imaging system in that received contrast signal was very close to 

the noise floor, diminishing the potential for higher values of CTR. Lower values of CTR are 

accompanied by higher specificity to contrast signal in images which can be observed when 

evaluating the differences in TNR. The TNR of B-mode images at depths below 7.0 mm 

were non-zero and statistically higher than DF images which averaged 0.47 dB through 

depth. As a result, DF images using higher order superharmonics produce images with 

excellent tissue suppression within physiologically relevant depths for IVUS imaging.

The axial and lateral size of the 200 µm diameter tube was measured from processed DF 

mode images after administration of contrast agents. Tube measurements were calculated as 

the full-width half maximum of the tube region relative to the background noise level in a 

phantom. Using this method, the axial measurement of the tube was 704.0 ± 24.6 µm (mean 

± s.e) while the lateral measurement was 510.5 ± 19.4 µm at an average depth of 4 mm in 

tissue.
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Ex Vivo Contrast Detection in Arteries from RFH Pigs

Preliminary results indicate that imaging through the arterial wall can be accomplished in 

mesenteric arteries. Coregistered B-mode and DF mode contrast specific images of an 

example specimen are given in Figure 9 along with CTR. Contrast to tissue ratios were 

calculated using the ROI approach described previously with tissue ROIs enclosing the B-

mode vessel structure through all slices in the volumetric set. Prior to injection of contrast 

agents, a B-mode scan was gathered and used to locate the front and back boundaries of the 

cellulose tube to accurately define contrast signal ROIs for subsequent scans (Figure 9a). In 

DF mode, the microcellulose tube could be clearly located with excellent tissue suppression 

(Figure 9b). Acoustic backscattering intensity from tissue was higher than that from 

microbubbles at the fundamental frequency (37 MHz), resulting in negative ex vivo B-mode 

CTR while DF mode CTR remained positive. Combining the DF and B-mode images 

provides both morphology of the vessel typically found in IVUS with contrast detection of 

microvascular flow (Figure 9c–d). These ex vivo studies demonstrate that higher order 

superharmonic signals from contrast agents can be generated using a low frequency element 

and detected using a high frequency receiving element through excised porcine arteries, 

suggesting that penetration through similar tissues should also be feasible in vivo.

In Vivo Contrast Detection of Microvascular Flow

Translation of this technique into the in vivo environment was performed after establishing 

feasibility from in vitro experiments. Photographs were taken of the chicken embryo to 

provide optical verification of vascular structures after embryos were cannulated for vascular 

perfusion of contrast agents (Figure 10a). Three-dimensional renderings of vessel networks 

were visualized by performing maximum intensity projections on volumetric datasets 

(Figure 10b). Contrast flow was monitored over time as a continuous infusion of contrast 

agents was administered while acquiring DF volumetric pullbacks. Contrast enhancement 

(CE), defined as the signal increase from pre-injection values, was calculated and used as a 

surrogate for CTR while CNR was computed as described previously. Since tissue devoid of 

contrast agents was not realizable in this animal model, the method of calculating the TNR 

in vivo was estimated by taking the ratio of CNR to CE. This method of calculation relies on 

the assumption that CE behaves similarly to CTR since TNR can be computed from the ratio 

of CNR to CTR. Image metrics were calculated and plotted over time for comparison 

(Figure 10c–d).

As seen in the phantom case, B-mode images had a non-zero CNR prior to contrast 

administration (6.42 dB) resulting from tissue backscatter from vessel walls. Dual-frequency 

mode images started with a statistically zero CNR (p = 0.28) but improved to a maximum 

value of 3.49 dB after 6 minutes of infusion. The slightly negative slope over time observed 

in DF mode CNR is likely to be a result of decreased cardiac function of the embryo. 

Contrast enhancement for B-mode was greater than DF mode (4.34 vs 2.30 dB) at the end 

time point, however, the difference was not statistically significant (p = 0.071). Tissue-to-

noise ratio was computed to determine the ability of the imaging mode to be specific to 

contrast agents. The TNR for DF images was statistically zero for all time points recorded 

while B-mode images had a mean TNR of 6.66 dB.
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Axial and lateral resolution was computed in optical and DF contrast images of the CAM 

vasculature. Optical measurements of vessels were taken such that they would correspond to 

lateral measurements in DF images and it was assumed that the diameter of the vessel in this 

plane would also be the diameter in the axial direction. The smallest vessel detected in vivo 
was measured to have a diameter of 140 ± 8.1 µm (mean ± s.e.) optically while the DF 

image measured 626.5 ± 16.9 µm axially and 603.2 ± 22.6 µm laterally.

Discussion

Our study has demonstrated that imaging using an IVUS transducer with an exceptionally 

large bandwidth achieved through multiple elements of different frequency ranges produces 

images with sensitivity to contrast in the microvasculature and tissue suppression not 

possible with standard single frequency IVUS probes. Superharmonic contrast images have 

reduced tissue contamination because the amplitude of the signal emitted by MCAs is much 

higher than that produced by tissue at frequencies 3 to 5 times higher than the transmitted 

frequency (Bouakaz et al. 2002a). While increasing tissue suppression in contrast images is 

beneficial, the contrast signal-to-noise ratio using higher order harmonics is reduced 

compared to using lower harmonics such as the 2nd or 3rd harmonics and provides a 

significant challenge to this approach using single element transducers. The peak CTR from 

the phantom study (1.75 dB) was approximately the same as the measured CNR, implying 

that contrast images were specific to MCAs alone. However, other studies of contrast-

enhanced IVUS have reported higher values for CNR (approximately 30 dB, 20 dB, and 20 

dB for sub-, ultra-, and superharmonic, respectively) than those presented here, though it is 

difficult to draw a direct comparison since imaging depths, vessel diameter, and type of 

contrast agents used are not the same (Goertz et al. 2006; Goertz et al. 2007; Maresca et al. 

2013). This imaging approach would likely benefit from translation to circular arrays where 

post-processing approaches such as beamforming on either transmit or receive would help 

improve the CNR over what can be obtained using only a single element.

The moderate mechanical indices used for causing broadband excitation of contrast agents 

disrupts the shell of the microbubbles and can lower the echogenicity of contrast agents 

upon further insonation (Chomas et al. 2001; Lindsey et al. 2015a). Replenishment of the 

contrast agents with blood flow allows echogenicity to recover over time making this issue 

less prevalent in larger diameter vessels which have higher volumetric flow rates, but may 

impact how well smaller vessels are resolved. In vivo measurements have indicated that 

vessels of 140 µm in diameter may be the limit of detection with the current imaging system, 

but it is unclear whether this limit is imposed by reduced cross-sectional backscatter or by 

contrast destruction and replenishment rates.

While off-axis energy deposition is normally avoided in ultrasound imaging to reduce clutter 

(Pinton et al. 2011), an added consequence when imaging contrast agents is to prevent the 

destruction of contrast agents. In Figure 6, the measured transmit pressure field of our 

transducer exhibited some off-axis energy deposition in the near field, which could 

potentially destroy contrast agents before being imaged by the receiving element, thus 

reducing CNR. However, this effect was not significant enough to prevent full 3D 

reconstructions of vascular phantoms. A 200 µm diameter vessel could be resolved in a 
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tissue mimicking phantom at depths up to 7 mm deep without the aid of signal averaging or 

use of multiple pulses.

Traditional B-mode IVUS images typically have greater axial resolution rather than lateral 

resolution since they use higher frequencies with small aperture transducers on both 

transmission and reception. However, axial resolution in contrast specific images using the 

described dual-frequency transducer was on average lower than the lateral resolution even 

though B-mode images using the high frequency element were able to resolve structures 

smaller than 200 µm axially. These observations provide growing support that axial 

resolution is degraded in DF operation primarily due to the increased pulse length used on 

transmission as observed previously (Ma et al. 2014), while lateral resolution was primarily 

dependent upon wave diffraction of the receiving element, but further analysis would be 

required to determine the validity of this hypothesis.

The ex vivo studies demonstrated that DF contrast specific imaging could detect the 

presence of a 200 µm diameter tube located outside of an excised porcine artery. Detection 

of microvascular flow external to the adventitial layer of the vessel is important since most 

vasa vasorum are externally derived and this location would be more difficult to detect due 

increased depth and attenuation. DF mode CTR increases at shallower depths suggesting 

that if vascular flow external to the vessel can be detected, the neovascularizations occurring 

in fatty plaques at reduced depths would likely be detectable as well. The low number of 

animals used in this study prevents statistical analysis.

At frequencies relevant for IVUS imaging, blood scattering effects become significant and 

attenuation becomes more severe (Lockwood et al. 1991). Additionally, the presence of 

MCAs in the lumen of the vessel where the IVUS catheter is placed results in attenuation 

and nonlinear propagation effects, which can produce pseudoenhancement artifacts, or 

contrast signal where no MCAs are present (Tang and Eckersley 2006; ten Kate et al. 2012). 

This artifact may mask the presence of true contrast in IVUS if vessels supplying the lesion 

lie close to the lumen of the parent artery. The experiments presented in this work represent 

a scenario in which the majority of microbubbles have been cleared by either temporary 

balloon occlusion or a saline flush to clear blood flow in the main artery while collecting an 

image (Jang et al. 2002). The studies presented reflect the saline flush case; it should be 

noted that the results would be subject to more severe attenuation if red blood cells and 

MCAs fill the vessel lumen during imaging.

Microvascular networks of the galline chorioallantoic membrane were imaged and rendered. 

Dual-frequency contrast images were highly selective to imaging only contrast signal and 

had a TNR of zero for all time points. Contrast signal-to-noise ratios were higher in B-mode 

images compared to DF images in both in vitro and in vivo trials, but B-mode images had a 

CNR that was non-zero even though contrast agents had not yet been injected (Figure 10c) 

indicating that this signal was not from contrast agents but rather vascular tissue within the 

region of interest. Fundamentally, the CNR of the imaging system limits the CTR that can be 

acquired, producing CTR values that were nearly equivalent to CNR when operating in DF 

mode.
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Conclusions

A new intravascular ultrasound method for visualizing microbubble contrast agents using 

higher order superharmonics has been described and demonstrated to detect microvascular 

blood vessels in vivo. Dual-frequency images effectively suppress tissue signal, but have 

lower signal-to-noise ratios than other contrast specific imaging methods. However, contrast 

images obtained using this method reject tissue well, making it suitable for producing 3D 

renderings of vessels. This technique has demonstrated its ability to detect contrast in 200 

µm vessels ex vivo using porcine arteries and vessels smaller than 200 µm in diameter in 
vivo without using multiple pulses. Additionally, phantom studies have demonstrated the 

feasibility of a dual-frequency approach to detect vasa vasorum-sized vessels at depths up to 

7 mm.
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Figure 1. 
Data and control signal flow for acquiring superharmonic signals using the dual-frequency 

transducer.
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Figure 2. 
Transmission and reception characteristics of the dual-frequency IVUS probe. (a) The time-

varying pressure produced by the 5.5 MHz element that was used when the transducer was 

operated in DF mode. The pressure response was recorded using a calibrated hydrophone in 

water at a depth of 2 mm. (b) The normalized power spectra of the transmitted pulse and the 

receiving element impulse response. There is little overlap between transmission and 

reception spectra, indicating that received signals will primarily consist of nonlinear 

harmonics.
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Figure 3. 
(a) Schematic of the microvascular phantom used to simulate vasa vasorum embedded in 

tissue. A 200 µm diameter cellulose tube was used to simulate a microvascular channel of 

the vasa vasorum within the tissue. (b) Frequency-dependent attenuation of the graphite 

phantom. The speed of sound measured to be 1548 ± 44 m/s at 22°C.
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Figure 4. 
Illustration of the ex vivo imaging setup. The porcine artery is sutured and attached to a 

custom fixture on either side that immobilizes the tissue during the imaging process. A 200 

µm diameter microcellulose tube is placed outside of the artery to simulate a deep vasa 
vasorum vessel and contrast agents are flowed through the vessel at a fixed concentration. 

The transducer is placed within the lumen of the vessel and images are acquired in 21 

different planes (dashed lines) separated by 200 µm under automated pullback. At each 

imaging plane, the transducer is rotated for one revolution to acquire an image before 

advancement to the next imaging plane.
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Figure 5. 
Photograph illustrating the position used to acquire images from the chorioallantoic 

membrane.
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Figure 6. 
(a) The measured pressure field distribution obtained by exciting the low frequency element 

with a Gaussian enveloped pulse and recording with a needle hydrophone. A dashed contour 

is overlaid on the field to identify the region having a mechanical index of 0.20 or higher 

which is the region containing the most nonlinear activity. (b) The simulated transmit 

pressure field using the impulse response from the low frequency element.
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Figure 7. 
(a) Cross sectional images of dual-frequency mode (left pane) and B-mode (right pane) 

show the presence of contrast agent (arrows) in a tissue mimicking phantom. The phantom 

lumen is outlined in both imaging modes for reference. (b) Cartoon illustrating the relative 

orientation of the contrast filled tubes embedded in the graphite phantom. (c) Three-

dimensional rendering of DF contrast specific imaging highlight the location of contrast 

filled tubes embedded within the phantom. Scale bars correspond to 1 mm in all figures 

while DF images are displayed with a 10 dB dynamic range and 40 dB for B-mode.
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Figure 8. 
Comparison of image metrics as a function of depth for both B-mode and dual-frequency 

mode contrast imaging. (a) Contrast-to-noise ratios using B-mode exceed those provided by 

DF mode, and at depths beyond 7 mm, the signal quality of both imaging modes fall below 

the noise floor giving CNR equal to zero. (b) Contrast-to-tissue ratios provide a measure of 

specificity of preferentially enhancing regions of contrast agents relative to surrounding 

tissue. DF mode images were non-zero and statistically higher than corresponding B-mode 

images. (c) The TNR of DF images were much lower than those found in B-mode, 

indicating that DF mode images are largely devoid of tissue backscatter. Asterisks (*) 

indicate that the mean is non-zero while daggers (†) show the means between groups are 

statistically different.
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Figure 9. 
Ex vivo imaging experiments through a porcine vessel using B-mode and dual-frequency 

contrast imaging show significant tissue reduction when operating in dual-frequency mode. 

(a) The B-mode image is acquired by placing the transducer within a suspended porcine 

coronary artery. The mean diameter of the lumen was measured to be 8.1 mm with a wall 

thickness of 1.42 mm. The dotted white circle indicates the location of the microcellulose 

tube placed external to the vessel. (b) A DF mode contrast image. Backscatter from tissue is 

largely suppressed while microbubble signal is still retained (dashed circle). (c) Orthotropic 

view and (d) side views of a 3D volume rendering of the vessel. Contrast signal (depicted in 
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red) was detected through the vessel and has been overlaid on traditional B-mode images 

(gray), showing the capability of the system to clearly identify the location of the 200 

micron artificial microvessel.
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Figure 10. 
(a) Photograph taken of the chorioallantoic membrane at 14 days showing microvasculature. 

The IVUS transducer was positioned relative to the vessels of interest (arrows) where a 4 

mm pullback was performed (cylindrical outline). (b) Three dimensional contrast specific 

rendering of the same region photographed using the dual-frequency IVUS transducer. 

Fiduciary marks (arrows) are used to aid the reader in coregistration of the optical and 

ultrasound images. Scale bars correspond to 1 mm distance. (c) Contrast-to-noise ratios 

improved for either imaging mode after injection of MCAs, with B-mode images having 

larger CNRs compared to DF modes. (d) Contrast enhancement after 14 minutes of infusion 

was not statistically different between the imaging modes (p = 0.07). (e) Tissue-to-noise 

ratios at all time points were statistically zero for DF images, indicating this imaging mode 

is capable of suppressing tissue harmonics effectively. B-mode images had a mean tissue to 

noise ratio of 6.67 dB after contrast injection.
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