352 research outputs found
Development and pilot evaluation of a personalized decision support intervention for low risk prostate cancer patients.
ObjectivesDevelopment and pilot evaluation of a personalized decision support intervention to help men with early-stage prostate cancer choose among active surveillance, surgery, and radiation.MethodsWe developed a decision aid featuring long-term survival and side effects data, based on focus group input and stakeholder endorsement. We trained premedical students to administer the intervention to newly diagnosed men with low-risk prostate cancer seen at the University of California, San Francisco. Before the intervention, and after the consultation with a urologist, we administered the Decision Quality Instrument for Prostate Cancer (DQI-PC). We hypothesized increases in two knowledge items from the DQI-PC: How many men diagnosed with early-stage prostate cancer will eventually die of prostate cancer? How much would waiting 3 months to make a treatment decision affect chances of survival? Correct answers were: "Most will die of something else" and "A little or not at all."ResultsThe development phase involved 6 patients, 1 family member, 2 physicians, and 5 other health care providers. In our pilot test, 57 men consented, and 44 received the decision support intervention and completed knowledge surveys at both timepoints. Regarding the two knowledge items of interest, before the intervention, 35/56 (63%) answered both correctly, compared to 36/44 (82%) after the medical consultation (P = .04 by chi-square test).ConclusionsThe intervention was associated with increased patient knowledge. Data from this pilot have guided the development of a larger scale randomized clinical trial to improve decision quality in men with prostate cancer being treated in community settings
Interleukin-6, age, and corpus callosum integrity.
The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories
Gender Differences in the Combined Effects of Cardiovascular Disease and Osteoarthritis on Progression to Functional Impairment in Older Mexican Americans
Comorbidity (COM) is an important issue in aging. Cardiovascular disease (CVD) and osteoarthritis separately and together may modify the trajectories of functional decline. This analysis examines whether specific and unrelated COMs influence functional change differently and vary by gender
Influence of neighbourhood socioeconomic position on the transition to type II diabetes in older Mexican Americans: the Sacramento Area Longitudinal Study on Aging
To examine the influence of neighbourhood socioeconomic position (NSEP) on development of diabetes over time
Cardiovascular Risk Score, Cognitive Decline, and Dementia in Older Mexican Americans: The Role of Sex and Education
Background: The purpose of this study was to examine the associations of cardiovascular disease (CVD) risk with cognitive decline and incidence of dementia and cognitive impairment but not dementia (CIND) and the role of education as a modifier of these effects. Methods and Results: One thousand one hundred sixteen Mexican American elderly were followed annually in the Sacramento Area Latino Study on Aging. Our sexâspecific 10âyear CVD risk score included baseline age, systolic blood pressure, total cholesterol, highâdensity lipoprotein, smoking, body mass index, and diabetes. From adjusted linear mixed models, errors on the Modified MiniâMental State Exam (3MSE) were annually 0.41% lower for women at the 25th percentile of CVD risk, 0.11% higher at the 50th percentile, and 0.83% higher at the 75th percentile (P value of CVDriskĂtime <0.01). In men, 3MSE errors were annually 1.76% lower at the 25th percentile of CVD risk, 0.96% lower at the 50th percentile, and 0.12% higher at the 75th percentile (P value of CVDriskĂtime <0.01). From adjusted linear mixed models, the annual decrease in the Spanish and English Verbal Learning Test score was 0.09 points for women at the 25th percentile of CVD risk, 0.10 points at the 50th percentile, and 0.12 points at the 75th percentile (P value of CVDriskĂtime=0.02). From adjusted Cox models in women, compared with having <6 years of education, having 12+ years of education was associated with a 76% lower hazard of dementia/CIND (95% CI, 0.08 to 0.71) at the 25th percentile of CVD risk and with a 45% lower hazard (95% CI, 0.28 to 1.07) at the 75th percentile (P value of CVDriskĂeducation=0.05). Conclusions: CVD risk score may provide a useful tool for identifying individuals at risk for cognitive decline and dementia
Independent effects of sham laparotomy and anesthesia on hepatic microRNA expression in rats
Background: Studies on liver regeneration following partial hepatectomy (PH) have identified several microRNAs (miRNAs) that show a regulated expression pattern. These studies involve major surgery to access the liver, which is known to have intrinsic effects on hepatic gene expression and may also affect miRNA screening results. We performed two-third PH or sham laparotomy (SL) in Wistar rats to investigate the effect of both procedures on miRNA expression in liver tissue and corresponding plasma samples by microarray and qRT-PCR analyses. As control groups, non-treated rats and rats undergoing anesthesia only were used. Results: We found that 49 out of 323 miRNAs (15%) were significantly deregulated after PH in liver tissue 12 to 48 hours postoperatively (>20% change), while 45 miRNAs (14%) were deregulated following SL. Out of these miRNAs, 10 miRNAs were similarly deregulated after PH and SL, while one miRNA showed opposite regulation. In plasma, miRNA upregulation was observed for miR-133a and miR-133b following PH and SL, whereas miR-100 and miR-466c were similarly downregulated following anesthesia and surgery. Conclusions: We show that miRNAs are indeed regulated by sham laparotomy and anesthesia in rats. These findings illustrate the critical need for finding appropriate control groups in experimental surgery
Metatranscriptome Profiling Indicates Size-Dependent Differentiation in Plastic and Conserved Community Traits and Functional Diversification in Dinoflagellate Communities
Communities of microscopic dinoflagellates are omnipresent in aquatic ecosystems. Consequently, their traits drive community processes with profound effects on global biogeochemistry. Species traits are, however, not necessarily static but respond to environmental changes in order to maintain fitness and may differ with cell size that scales physiological rates. Comprehending such trait characteristics is necessary for a mechanistic understanding of plankton community dynamics and resulting biogeochemical impacts. Here, we used information theory to analyze metatranscriptomes of micro- and nano-dinoflagellate communities in three ecosystems. Measures of gene expression variations were set as a proxy to determine conserved and plastic community traits and the environmental influence on trait changes. Using metabarcoding, we further investigated if communities with a more similar taxon composition also express more similar traits. Our results indicate that plastic community traits mainly arise from membrane vesicle associated processes in all the environments we investigated. A specific environmental influence on trait plasticity was observed to arise from nitrogen availability in both size classes. Species interactions also appeared to be responsible for trait plasticity in the smaller-sized dinoflagellates. Additionally, the smaller-sized dinoflagellate communities are characterized by the expression of a large pool of habitat specific genes despite being taxonomically more similar across the habitats, in contrast to the microplanktonic assemblages that adapted to their environments by changing species composition. Our data highlight the functional diversification on the gene level as a signature of smaller sized dinoflagellates, nitrogen availability and species interactions as drivers of trait plasticity, and traits most likely linked to fitness and community performance
The SSN ontology of the W3C semantic sensor network incubator group
The W3C Semantic Sensor Network Incubator group (the SSN-XG) produced an OWL 2 ontology to describe sensors and observations ? the SSN ontology, available at http://purl.oclc.org/NET/ssnx/ssn. The SSN ontology can describe sensors in terms of capabilities, measurement processes, observations and deployments. This article describes the SSN ontology. It further gives an example and describes the use of the ontology in recent research projects
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protectionâevaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
Increases in a Pro-inflammatory Chemokine, MCP-1, Are Related to Decreases in Memory Over Time
Objective: To determine the longitudinal relationship between monocyte chemotactic protein 1 (MCP-1)/CCL2 and memory function in older adults.Methods: We examined longitudinal plasma MCP-1/CCL2 levels and a longitudinal verbal memory measure (CVLT-II 20â recall) in a sample of 399 asymptomatic older adults (mean age = 72.1). Total visits ranged from 1 to 8, with an average time of 2.1 years between each visit, yielding 932 total observations. In order to isolate change over time, we decomposed MCP-1/CCL2 into subject-specific means and longitudinal deviations from the mean. The decomposed MCP-1/CCL2 variables were entered as predictors in linear mixed effects models, with age at baseline, sex, and education entered as covariates and recall as the longitudinal outcome. In follow-up analyses, we controlled for global cognition and APOE genotype, as well as baseline vascular risk factors. We also examined the specificity of findings by examining the longitudinal association between the MCP-1/CCL2 variables and non-memory cognitive tests.Results: Within-subject increases in MCP-1/CCL2 levels were associated with decreases in delayed recall (t = â2.65; p = 0.01) over time. Results were independent of global cognitive function and APOE status (t = â2.30, p = 0.02), and effects remained when controlling for baseline vascular risk factors (t = â1.92, p = 0.05). No associations were noted between within-subject increases in MCP-1/CCL2 levels and other cognitive domains.Conclusions: In an asymptomatic aging adult cohort, longitudinal increases in MCP-1/CCL2 levels were associated with longitudinal decline in memory. Results suggest that âhealthy agingâ is typified by early remodeling of the immune system, and that the chemokine, MCP-1/CCL2, may be associated with negative memory outcomes
- âŠ