58 research outputs found
Electrochemical activation of molecular nitrogen at the Ir/YSZ interface.
Nitrogen is often used as an inert background atmosphere in solid state studies of electrode and reaction kinetics, of solid state studies of transport phenomena, and in applications e.g. solid oxide fuel cells (SOFC), sensors and membranes. Thus, chemical and electrochemical reactions of oxides related to or with dinitrogen are not supposed and in general not considered. We demonstrate by a steady state electrochemical polarisation experiments complemented with in situphotoelectron spectroscopy (XPS) that at a temperature of 450 °C dinitrogen can be electrochemically activated at the three phase boundary between N2, a metal microelectrode and one of the most widely used solid oxide electrolytes—yttria stabilized zirconia (YSZ)—at potentials more negative than E = −1.25 V. The process is neither related to a reduction of the electrolyte nor to an adsorption process or a purely chemical reaction but is electrochemical in nature. Only at potentials more negative than E = −2 V did new components of Zr 3d and Y 3d signals with a lower formal charge appear, thus indicating electrochemical reduction of the electrolyte matrix. Theoretical model calculations suggest the presence of anionic intermediates with delocalized electrons at the electrode/electrolyte reaction interface. The ex situSIMS analysis confirmed that nitrogen is incorporated and migrates into the electrolyte beneath the electrode
A comparative in situ XPS study of PtRuCo catalyst for CH<sub>3</sub>OH and CO oxidation using water
Performance and Degradation of Electrolyte-Supported Single Cell Composed of Mo-Au-Ni/GDC Fuel Electrode and LSCF Oxygen Electrode during High Temperature Steam Electrolysis
Ni-gadolinia-doped ceria (GDC) based electrode materials have drawn significant attention as an alternative fuel electrode for solid oxide cells (SOCs) owing to mixed ionic conductivity of GDC and high electronic and catalytic activity of Ni. Moreover, the catalytic activity and electrochemical performance of the Ni-GDC electrode can be further improved by dispersing small quantities of other metal additives, such as gold or molybdenum. Therefore, herein, we considered gold and molybdenum modified Ni-GDC electrodes and focused on the upscaling; hence, we prepared 5 × 5 cm2 electrolyte-supported single cells. Their electrochemical performance was investigated at different temperatures and fuel gas compositions. The long-term steam electrolysis test, up to 1700 h, was performed at 900 °C with −0.3 A·cm−2 current load. Lastly, post-test analyses of measured cells were carried out to investigate their degradation mechanisms. Sr-segregation and cobalt oxide formation towards the oxygen electrode side, and Ni-particle coarsening and depletion away from the electrolyte towards the fuel electrode side, were observed, and can be considered as a main reason for the degradation. Thus, modification of Ni/GDC with Au and Mo seems to significantly improve the electro-catalytic activity of the electrode; however, it does not significantly mitigate the Ni-migration phenomenon after prolonged operatio
- …