23 research outputs found

    Essential role for poly (ADP-ribosyl)ation in mouse preimplantation development

    Get PDF
    BACKGROUND: Poly (ADP-ribosyl)ation is a covalent modification of many nuclear proteins. It has a strong chromatin modifying potential involved in DNA repair, transcription and replication. Its role during preimplantation development is unknown. RESULTS: We have observed strong but transient synthesis of poly ADP-ribose polymers on decondensing chromosomes of fertilized and parthenogenetically activated mouse oocytes. Inhibition of this transient upregulation with a specific enzyme inhibitor, 3-aminobenzamide, has long-term effects on the postimplantation development of the embryos. In addition, inhibition of poly (ADP-ribosyl)ation at the 4–8 cell stage selectively blocks morula compaction. CONCLUSION: These observations suggest that poly (ADP-ribosyl)ation is involved in the epigenetic chromatin remodeling in the zygote

    Bistable Cell Fate Specification as a Result of Stochastic Fluctuations and Collective Spatial Cell Behaviour

    Get PDF
    BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions

    The Origin of Phenotypic Heterogeneity in a Clonal Cell Population In Vitro

    Get PDF
    BACKGROUND: The spontaneous emergence of phenotypic heterogeneity in clonal populations of mammalian cells in vitro is a rule rather than an exception. We consider two simple, mutually non-exclusive models that explain the generation of diverse cell types in a homogeneous population. In the first model, the phenotypic switch is the consequence of extrinsic factors. Initially identical cells may become different because they encounter different local environments that induce adaptive responses. According to the second model, the phenotypic switch is intrinsic to the cells that may occur even in homogeneous environments. PRINCIPAL FINDINGS: We have investigated the “extrinsic” and the “intrinsic” mechanisms using computer simulations and experimentation. First, we simulated in silico the emergence of two cell types in a clonal cell population using a multiagent model. Both mechanisms produced stable phenotypic heterogeneity, but the distribution of the cell types was different. The “intrinsic” model predicted an even distribution of the rare phenotype cells, while in the “extrinsic” model these cells formed small clusters. The key predictions of the two models were confronted with the results obtained experimentally using a myogenic cell line. CONCLUSIONS: The observations emphasize the importance of the “ecological” context and suggest that, consistently with the “extrinsic” model, local stochastic interactions between phenotypically identical cells play a key role in the initiation of phenotypic switch. Nevertheless, the “intrinsic” model also shows some other aspects of reality: The phenotypic switch is not triggered exclusively by the local environmental variations, but also depends to some extent on the phenotypic intrinsic robustness of the cells

    DĂ©veloppement et mise en place d’un systĂšme de dĂ©tection molĂ©culaire pour la tuberculose bovine

    No full text
    La tuberculose bovine (TB) est une maladie zoonotique Ă  dĂ©claration obligatoire justifiant un engagement financier et humain de l’Etat sur des actions de surveillance et de lutte en Ă©levage, dont l’agent causal majeur est Mycobacterium bovis. Avec un taux de prĂ©valence au niveau du cheptel faible (< 0.01%), la France est considĂ©rĂ©e indemne de tuberculose bovine (OIT) par l’Union EuropĂ©enne depuis 2001. NĂ©anmoins, depuis 2004 avec l’intensification du plan de surveillance, il est observĂ© une recrudescence de la TB dans certaines rĂ©gions mettant ainsi en pĂ©ril ce statut OIT. M. bovis, dont le rĂ©servoir principal est le bovin, est capable d’infecter un trĂšs large spectre de mammifĂšres dont l’homme et de persister dans l’environnement. La circulation de la TB est multifactorielle, le rĂŽle de la faune sauvage et de l’environnement restant Ă  dĂ©terminer. Le plan de surveillance de la TB chez les bovins est basĂ© sur un systĂšme de dĂ©pistage/abattage programmĂ© au niveau national, avec l’inspection/dĂ©tection de lĂ©sions Ă©vocatrices de TB Ă  l’abattoir, qui sont prĂ©levĂ©es, analysĂ©es par histologie et mises en culture (selon la mĂ©thode officielle de la Directive europĂ©enne 64/432). M. bovis est une bactĂ©rie Ă  croissance lente (3 mois), ce qui implique une chaine de diagnostic pouvant aller jusqu’à 6 mois avec des outils diagnostic ante-/post-mortem, qui prĂ©sentent souvent un manque de spĂ©cificitĂ© au regard de la diversitĂ© du genre Mycobacterium. Dans un contexte de faible prĂ©valence, le diagnostic de la TB doit ĂȘtre rapide, fiable et simple dans le but de faciliter la gestion de la crise et limiter les pertes Ă©conomiques. Dans ce mĂ©moire de diplĂŽme EPHE, je prĂ©sente l’élaboration d’un systĂšme de dĂ©tection et d’identification des mycobactĂ©ries impliquĂ©es ou interfĂ©rant dans le diagnostic de la TB Ă  l’aide d’une mĂ©thode PCR et du spoligotypage. L’identification par PCR en temps rĂ©el des bactĂ©ries repose sur l’amplification de 9 cibles gĂ©nĂ©tiques selon une validation rĂ©alisĂ©e suivant la norme NF-U-47-600. L’analyse des Ă©chantillons par spoligotypage a Ă©tĂ© axĂ©e sur l’optimisation de la mĂ©thode pour la rendre applicable directement Ă  des ADN extraits de prĂ©lĂšvements (animal ou environnemental).L’association des 2 mĂ©thodes de dĂ©tection molĂ©culaire a permis d’une part d’augmenter la sensibilitĂ© du diagnostic chez l’animal avec l’identification dans 95% des cas des mycobactĂ©ries tuberculeuses incriminĂ©es mais Ă©galement l’identification d’autres actinomycĂ©tales responsables de rĂ©actions croisĂ©es dans les tests ante-mortem. Les mĂ©thodes dĂ©veloppĂ©es ont par ailleurs permis la rĂ©alisation d’essais prĂ©liminaires dans l’étude de l’élaboration d’un vaccin oral chez les blaireaux. Il a permis Ă©galement la dĂ©tection de l’agent causal de la maladie dans des prĂ©lĂšvements de l’environnement prouvant ainsi le rĂŽle de ceux-ci dans des cycles de transmission multifactoriels-multi-hĂŽtes.En conclusion, les mĂ©thodes de dĂ©tection molĂ©culaire dĂ©veloppĂ©es dans le cadre de ce projet permet au Laboratoire National de RĂ©fĂ©rence (LNR) d’accĂ©lĂ©rer la chaine de diagnostic et de gestion de la maladie ainsi que d’amĂ©liorer les connaissances sur les mĂ©canismes de transmission de la tuberculose bovine

    Stochastic Fluctuations and Distributed Control of Gene Expression Impact Cellular Memory

    Get PDF
    International audienceDespite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins

    The “extrinsic” model.

    No full text
    <p><b>A</b>: Simulations with the “extrinsic” model using increasing values of N<sub>ex</sub>. Note the increasing proportion and clustering of type A (red) cells with increasing N<sub>ex</sub>. In all simulations N<sub>max death</sub> = 40 was used. <b>B</b>: Analysis of type A cell distribution as a function of average migration velocity and varying N<sub>ex</sub> using the standardized nearest neighbour distance. Type A cells were clustered (<i>w</i><1) at all but small average velocity values at all N<sub>ex</sub> values analysed.</p

    The “hybrid extrinsic-intrinsic” model.

    No full text
    <p><b>A.</b> Cells migrate, divide and die under the same conditions as in the “extrinsic” and “intrinsic” models. The phenotypic switch of each cell is dependent on the local cell density as in the “extrinsic” model, but the cells encountering a favourable microenvironment undergo phenotypic change with probabilities p<sub>AtoB</sub> and p<sub>BtoA</sub>. B: Results of a typical simulation of the “hybrid” model during the growth phase and at equilibrium. Note the simultaneous presence of small clusters and dispersed single type A cells. p<sub>AtoB</sub> = 0.7 and p<sub>BtoA</sub> = 0.4. C: The distribution of the number of neighbours around the A and B cells (left and right respectively) in the hybrid model. The average number of neighbours and the standard deviation are indicated for each panel. Note the more dispersed distribution of type A cell neighbours. D: Analysis of the spatial distribution randomness of SP and MP cells using Ripley's L statistics. The upper panel shows the type A cell L-function (red line) with values larger than 0 and outside the range defined by the upper-and lower-envelope functions (black line) (this indicates significant clustering of type A cells at small R distances). The type B cells (green line) are randomly distributed, because the L(h) values are close to 0 at all scales (R).</p
    corecore