1,892 research outputs found

    Capacity Bounds for One-Bit MIMO Gaussian Channels with Analog Combining

    Full text link
    The use of 1-bit analog-to-digital converters (ADCs) is seen as a promising approach to significantly reduce the power consumption and hardware cost of multiple-input multiple-output (MIMO) receivers. However, the nonlinear distortion due to 1-bit quantization fundamentally changes the optimal communication strategy and also imposes a capacity penalty to the system. In this paper, the capacity of a Gaussian MIMO channel in which the antenna outputs are processed by an analog linear combiner and then quantized by a set of zero threshold ADCs is studied. A new capacity upper bound for the zero threshold case is established that is tighter than the bounds available in the literature. In addition, we propose an achievability scheme which configures the analog combiner to create parallel Gaussian channels with phase quantization at the output. Under this class of analog combiners, an algorithm is presented that identifies the analog combiner and input distribution that maximize the achievable rate. Numerical results are provided showing that the rate of the achievability scheme is tight in the low signal-to-noise ratio (SNR) regime. Finally, a new 1-bit MIMO receiver architecture which employs analog temporal and spatial processing is proposed. The proposed receiver attains the capacity in the high SNR regime.Comment: 30 pages, 9 figures, Submitted to IEEE Transactions on Communication

    Nanomechanical and thermophoretic analyses of the nucleotide-dependent interactions between the AAA+ subunits of magnesium chelatase

    Get PDF
    In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA+ proteins ChlI and ChlD, form a ChlID− MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID− MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID−MgATP complex. The N-terminal AAA+ domain of ChlD is essential for complex formation, but some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID−MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA+ domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID−MgADP complexes. These experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex

    Neutral B-meson mixing from three-flavor lattice QCD: Determination of the SU(3)-breaking ratio \xi

    Get PDF
    We study SU(3)-breaking effects in the neutral B_d-\bar B_d and B_s-\bar B_s systems with unquenched N_f=2+1 lattice QCD. We calculate the relevant matrix elements on the MILC collaboration's gauge configurations with asqtad-improved staggered sea quarks. For the valence light-quarks (u, d, and s) we use the asqtad action, while for b quarks we use the Fermilab action. We obtain \xi=f_{B_s}\sqrt{B_{B_s}}/f_{B_d}\sqrt{B_{B_d}}=1.268+-0.063. We also present results for the ratio of bag parameters B_{B_s}/B_{B_d} and the ratio of CKM matrix elements |V_{td}|/|V_{ts}|. Although we focus on the calculation of \xi, the strategy and techniques described here will be employed in future extended studies of the B mixing parameters \Delta M_{d,s} and \Delta\Gamma_{d,s} in the Standard Model and beyond.Comment: 36 pages, 7 figure

    Simple, Direct Routes to Polymer Brush Traps and Nanostructures for Studies of Diffusional Transport in Supported Lipid Bilayers

    Get PDF
    Patterned poly(oligo ethylene glycol) methyl ether methacrylate (POEGMEMA) brush structures may be formed by using a combination of atom-transfer radical polymerization (ATRP) and UV photopatterning. UV photolysis is used to selectively dechlorinate films of 4-(chloromethyl)phenyltrichlorosilane (CMPTS) adsorbed on silica surfaces, by exposure either through a mask or using a two-beam interferometer. Exposure through a mask yields patterns of carboxylic acid-terminated adsorbates. POEGMEMA may be grown from intact Cl initiators that were masked during exposure. Corrals, traps, and other structures formed in this way enable the patterning of proteins, vesicles, and, following vesicle rupture, supported lipid bilayers (SLBs). Bilayers adsorbed on the carboxylic acid-terminated surfaces formed by C–Cl bond photolysis in CMPTS exhibit high mobility. SLBs do not form on POEGMEMA. Using traps consisting of carboxylic acid-functionalized regions enclosed by POEGMEMA structures, electrophoresis may be observed in lipid bilayers containing a small amount of a fluorescent dye. Segregation of dye at one end of the traps was measured by fluorescence microscopy. The increase in the fluorescence intensity was found to be proportional to the trap length, while the time taken to reach the maximum value was inversely proportional to the trap length, indicating uniform, rapid diffusion in all of the traps. Nanostructured materials were formed using interferometric lithography. Channels were defined by exposure of CMPTS films to maxima in the interferogram, and POEGMEMA walls were formed by ATRP. As for the micrometer-scale patterns, bilayers did not form on the POEGMEMA structures, and high lipid mobilities were measured in the polymer-free regions of the channels

    The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping

    Get PDF
    In this work we present a reliable technique for the production of large areas of high aspect-ratio patterns and describe their use as model super-hydrophobic systems. The high thickness and straight sidewalls possible with SU-8 were used to generate dense patterns of small pillars. These photoresist patterns could be used directly, without the need for micromoulding. A method is given allowing resist thickness to be varied over a wide range and a bottom antireflective layer was used to simplify patterning on reflective substrates. This patterning technique allows rapid testing of wetting theories, as pattern size and depth can be varied simply and samples can be produced in sufficient numbers for laboratory use. We show how the static contact angle of water varies with pattern height for one sample-pattern and how static and dynamic contact angles vary with dimension using high aspect-ratio patterns

    Would raising the total cholesterol diagnostic cut-off from 7.5 mmol/L to 9.3 mmol/L improve detection rate of patients with monogenic familial hypercholesterolaemia?

    Get PDF
    A previous report suggested that 88% of individuals in the general population with total cholesterol (TC)>9.3mmol/L have familial hypercholesterolaemia (FH). We tested this hypothesis in a cohort of 4896 UK civil servants, mean (SD) age 44 (±6) years, using next generation sequencing to achieve a comprehensive genetic diagnosis. 25 (0.5%) participants (mean age 49.2 years) had baseline TC>9.3mmol/L, and overall we found an FH-causing mutation in the LDLR gene in seven (28%) subjects. The detection rate increased to 39% by excluding eight participants with triglyceride levels over 2.3mmol/L, and reached 75% in those with TC>10.4mmol/L. By extrapolation, the detection rate would be ~25% by including all participants with TC>8.6mmol/L (2.5 standard deviations from the mean). Based on the 1/500 FH frequency, 30% of all FH-cases in this cohort would be missed using the 9.3mmol/L cut-off. Given that an overall detection rate of 25% is considered economically acceptable, these data suggest that a diagnostic TC cut-off of 8.6mmol/L, rather than 9.3mmol/L would be clinically useful for FH in the general population

    Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Get PDF
    Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake. Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task
    corecore