16 research outputs found
Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling-Sliding Contacts
The effect of N-Tallow-1,3-DiaminoPropane (TDP) on friction, rolling wear and micropitting has been investigated with the ultimate objective of developing lubricants with no or minimal environmental impact. A Mini Traction Machine (MTM-SLIM) has been utilised in order to generate tribofilms and observe the effect of TDP on anti-wear tribofilm formation and friction. Micropitting was induced on the surface of specimens using a MicroPitting Rig (MPR). The X-ray Photoelectron Spectroscopy (XPS) surface analytical technique has been employed to investigate the effect of TDP on the chemical composition of the tribofilm while Atomic Force Microscopy (AFM) was used to generate high resolution topographical images of the tribofilms formed on the MTM discs. Experimental and analytical results showed that TDP delays the Zinc DialkylDithioPhosphate (ZDDP) anti-wear tribofilm formation. TDP in combination with ZDDP induces a thinner and smoother anti-wear tribofilm with a modified chemical structure composed of mixed Fe/Zn (poly)phosphates. The sulphide contribution to the tribofilm and oxygen-to-phosphorous atomic concentration ratio are greater in the bulk of the tribofilm derived from a combination of TDP and ZDDP compared to a tribofilm derived from ZDDP alone. Surface analysis showed that utilising TDP effectively mitigates micropitting wear in the test conditions used in this study. Reduction of micropitting, relevant to rolling bearing applications, can be attributed to the improved running-in procedure, reduced friction, formation of a smoother tribofilm and modification of the tribofilm composition induced by TDP
Tribochemical Study of Micropitting in Tribocorrosive Lubricated Contacts: The Influence of Water and Relative Humidity
Water ingress into the lubricant as a contaminant affects performance leading to an alteration in wear, corrosion and fatigue behaviour of the tribological components especially in the rolling element bearings. The current study addresses the tribochemical phenomena involved in micropitting in tribocorrosion systems where different levels of dissolved-water are present in a model lubricant. In this study the effect of different temperatures, water concentrations and relative humidities have been investigated on micropitting under rolling-sliding contacts. The influence of free and dissolved water on tribocorrosive micropitting is clarified. The tribochemical change of the reaction films is studied using X-ray Photoelectron Spectroscopy (XPS) which confirmed that the (poly)phosphate chain length and tribofilm thickness are reduced with increased dissolved-water level
Undercover lung damage in pediatrics -Â a hot spot in morbidity caused by collagenoses
Connective tissue represents the support matrix and the connection between tissues and organs. In its composition, collagen, the major structural protein, is the main component of the skin, bones, tendons and ligaments. Especially at the pediatric age, its damage in the context of pathologies such as systemic lupus erythematosus, scleroderma or dermatomyositis can have a significant negative impact on the development and optimal functioning of the body. The consequences can extend to various structures (e.g., joints, skin, eyes, lungs, heart, kidneys). Of these, we retain and reveal later in our manuscript, mainly the respiratory involvement. Manifested in various forms that can damage the chest wall, pleura, interstitium or vascularization, lung damage in pediatric systemic inflammatory diseases is underdeveloped in the literature compared to that described in adults. Under the threat of severe evolution, sometimes rapidly progressive and leading to death, it is necessary to increase the popularization of information aimed at physiopathological triggering and maintenance mechanisms, diagnostic means, and therapeutic directions among medical specialists. In addition, we emphasize the need for interdisciplinary collaboration, especially between pediatricians, rheumatologists, infectious disease specialists, pulmonologists, and immunologists. Through our narrative review we aimed to bring up to date, in a concise and easy to assimilate, general principles regarding the pulmonary impact of collagenoses using the most recent articles published in international libraries, duplicated by previous articles, of reference for the targeted pathologies
A Semi-deterministic Wear Model Considering the Effect of Zinc Dialkyl Dithiophosphate Tribofilm
Tribochemistry plays a very important role in the behaviour of systems in tribologically loaded contacts under boundary lubrication conditions. Previous works have mainly reported contact mechanics simulations for
capturing the boundary lubrication regime, but the real mechanism in which tribofilms reduce wear is still unclear. In this paper, the wear prediction capabilities of a recently published mechanochemical simulation approach (Ghanbarzadeh et al. in Tribol Int, 2014) are tested. The wear model, which involves a time- and spatially dependent
coefficient of wear, was tested for two additive concentrations and three temperatures at different times, and the predictions are validated against experimental results. The experiments were conducted using a mini-traction machine in a sliding/rolling condition, and the spacer layer interferometry method was used to measure the tribofilm thickness. Wear measurements have been taken using a white-light interferometry. Good agreement is seen between simulation and experiment in terms of tribofilm thickness and wear depth predictions