142 research outputs found
Degradation of aluminide type bondcoats due to oxidation and interdiffusion: effect of base alloy composition
Please click Additional Files below to see the full abstract
Oxidation and interdiffusion in MCrAlY-type bondcoats and their correlation with TBC life
A pre-requisite for extended and reproducible lifetimes of thermal barrier coating (TBC) systems is the use of oxidation-resistant metallic bondcoats with optimized performance. Whereas in aircraft engines electron-beam physically vapour deposited (EB-PVD) TBCs with Ni-aluminide type bondcoats are used, in land based gas-turbines MCrAlY-type (M=Ni,Co) bondcoats are applied, typically in combination with a ceramic topcoat produced by atmospheric plasma spraying (APS).
Failure mechanisms and parameters, which influence lifetime of the TBC-systems with MCrAlY-bondcoats will be discussed. The performance of MCrAlY-bondcoats will be shown to depend on the contents of the major alloying elements Co, Ni, Cr and Al as well as minor additions of Y and Hf. In addition, the role of manufacturing related properties such as coating thickness, porosity, surface roughness profile and oxygen content in determining TBC-system lifetime will be emphasized.
The requirements of high bondcoat oxidation (corrosion) resistance and good chemical compatibility with the base material are frequently contradictory with respect to the bondcoat chemistry. One of the possible solutions to the latter problem is using multilayered bondcoats with an outer layer optimized for formation of a slowly thickening thermally grown oxide (TGO) and the bottom layer optimized for suitable mechanical properties and reduced interdiffusion with the base material. It will be shown that successful development and application of such complex, multilayer coating systems can be substantially facilitated using thermodynamic/kinetic modeling, the vast potential of which has become apparent in recent years
Modelling of Creep and Oscillations in Material Described by Armstrong-Frederick Equations
Different structural elements at high temperatures and cyclic loading demonstrate essential creep behavior.
Due to variety of materials which are used in modern industrial applications the different forms of creep
response have to be analyzed. The one of them presents in materials are characterized by creep processes with
essential recovery, which is expressed by strain decreasing after the unloading. Such material behavior is
described by well-known Armstrong-Frederick model.
The case of cyclic loading leading to forced oscillations at high temperature is studied. The Armstrong-
Frederick creep model contains two equations: first for creep strain rate function as well as the second for socalled
backstress evolution. The problem is solved by two time scales methods with subsequent averaging in a
period of oscillations.
The solution was performed for the hyperbolic creep strain rate function which satisfactory describes the
high-temperature behavior of advanced steel with primary creep conditions. The stress function is presented by
expansion in Fourier series. Asymptotic solution of creep equations was obtained and by use of the procedure
of averaging in the period the new model describing βslowβ creep motion has been derived. The analytical
forms of influence functions for both equations of the model expressing the role of cyclical loading were
obtained.
Numerical examples which demonstrate the cyclic creep behavior in advanced steel X20CrMoV12-l are
presented and discussed
Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΈ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ n-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠΠΠ₯-ΠΠ‘/ΠΠ‘ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°
Aim. To assess bioequivalence of sildenafil citrate tablet formulation produced by pharmaceutical company βMicrokhimβ (Rubezhnoe, Ukraine) it was developed and validated a prompt, specific and quite simple method for quantitative determination of sildenafil and its active metabolite - N-desmethyl sildenafil concentrations in the human blood using deuterium labeled internal standards. Direct liquid-liquid extraction procedure was utilized to extract the analytes from the blood plasma.Methods. Contents of sildenafil and its metabolite in supernatant were determined by means of the high performance liquid chromatography / tandem mass spectrometric detection technique. Ionization of sildenafil, N-desmethyl sildenafil, sildenafil-d8 and N-desmethyl sildenafil-d8 was performed in the positive electrospray mode (ESI, Positive). Detection of the analytes was carried out in the multi reactions monitoring (MRM) regimen with the following m/z values for selected parent ions: 475,30; 483,20; 461,20 and 469,20, respectively. The daughter ion m/z value was selected to be 283,10 for all analytes.Results. Analytical method proposed proved to demonstrate reliable accuracy and reproducibility for both analytes and has been validated within linear range 5,05-1009,92 ng/ml for sildenafil and 2,24-400,84 ng/mL for N-desmethyl sildenafil with correlation coefficient (r2) equaled to 0.9975 and 0.9973, respectively.Conclusions. It was developed and validated a simple, specific and sensitive HPLC-MS/MS method for quantitative determination of sildenafil and its active metabolite N-desmethyl sildenafil concentrations in human blood plasma utilizing stable isotope labeled internal standards β deuterated sildenafil-d8 and N-desmethyl sildenafil- d8. Important feature of the method was a modified preanalytical procedures of biological samples preparation β direct liquid-liquid extraction that allowed to avoid laborious and time-consuming procedures such as evaporation to concentrate the samples with consequent recovery of dry residue, as well as to refuse from expensive solid-phase extraction. Application of the deuterium labeled internal standards allowed to suppress a biological matrix effect drastically, as well as to reach target LLOQ level. Experimental data obtained in the course of full validation of the method proposed that was performed in accordance with approved national and international technical and regulatory requirements, allowed to affirm high specificity, sensitivity, accuracy, reproducibility and efficiency of the method.Π¦Π΅Π»Ρ. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π±Π»Π΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° (ΡΠ°Π±Π»Π΅ΡΠΊΠΈ Β«Π’Π΅Π³ΡΡΠΌΒ» 100 ΠΌΠ³), ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΠΠ Β«ΠΠΠ€ Β«ΠΠΈΠΊΡΠΎΡ
ΠΈΠΌΒ» (Π³. Π ΡΠ±Π΅ΠΆΠ½ΠΎΠ΅, Π£ΠΊΡΠ°ΠΈΠ½Π°) Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ Π²Π°Π»ΠΈΠ΄ΠΈΡΠΎΠ²Π°Π½ Π±ΡΡΡΡΡΠΉ, ΠΏΡΠΎΡΡΠΎΠΉ ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° - N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ², ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π°ΡΠΎΠΌΠ°ΠΌΠΈ Π΄Π΅ΠΉΡΠ΅ΡΠΈΡ. ΠΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈΠ· ΠΏΠ»Π°Π·ΠΌΡ ΠΊΡΠΎΠ²ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΡΠΌΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ-ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ.ΠΠ΅ΡΠΎΠ΄Ρ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π² Π½Π°Π΄ΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ Ρ ΡΠ°Π½Π΄Π΅ΠΌΠ½ΡΠΌ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. ΠΠΎΠ½ΠΈΠ·Π°ΡΠΈΡ cΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°, N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°, cΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°-d8 ΠΈ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°-d8 ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ (ESI, Positive). ΠΡΠΈ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³ ΠΌΡΠ»ΡΡΠΈΡΠ΅Π°ΠΊΡΠΈΠΉ (MRM) Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΈΡ
ΠΈΠΎΠ½ΠΎΠ² Ρ m/z 475,30; 483,20; 461,20; 469,20. ΠΠΎΡΠ΅ΡΠ½ΠΈΠΉ ΠΈΠΎΠ½ Π±ΡΠ» Π²ΡΠ±ΡΠ°Π½ Ρ m/z 283,10 Π΄Π»Ρ Π²ΡΠ΅Ρ
Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π Ρ
ΠΎΠ΄Π΅ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 5,05-1009,92 Π½Π³/ΠΌΠ» Π΄Π»Ρ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ 2,24-400,84 Π½Π³/ΠΌΠ» Π΄Π»Ρ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ (r2) ΡΠΎΡΡΠ°Π²ΠΈΠ» 0,9975 ΠΈ 0,9973 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»Π° ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π½Π°Π΄ΡΠΆΠ½Π°Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ
Π°Π½Π°Π»ΠΈΡΠΎΠ².ΠΡΠ²ΠΎΠ΄Ρ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ Π²Π°Π»ΠΈΠ΄ΠΈΡΠΎΠ²Π°Π½ ΠΏΡΠΎΡΡΠΎΠΉ, ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΠΠΠ₯-ΠΠ‘/ΠΠ‘ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ°ΠΌΠΈ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ² - ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»-d8 ΠΈ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»- d8. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡ-ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ Π½Π° ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΎΠ±ΠΎΠΈΡ
Π°Π½Π°Π»ΠΈΡΠΎΠ² Π² Π½Π°Π΄ΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π±Π΅Π· ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ
ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΈΡ
ΠΈ Π²ΡΠ΅ΠΌΡΠ·Π°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅Π΄ΡΡ, ΠΊΠ°ΠΊ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Ρ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΡ
ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΡΠΊΠ° ΠΈΠ»ΠΈ Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠ΅ΠΉ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² Ρ
ΠΎΠ΄Π΅ ΠΏΠΎΠ»Π½ΠΎΠΉ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΌ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ, Π° ΡΠ°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ Π²ΡΡΠΎΠΊΡΡ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ, ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΡΠΎΡΠ½ΠΎΡΡΡ, Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΠΎΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°
Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΈ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ n-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΠΠΠ₯-ΠΠ‘/ΠΠ‘ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°
Aim. To assess bioequivalence of sildenafil citrate tablet formulation produced by pharmaceutical company βMicrokhimβ (Rubezhnoe, Ukraine) it was developed and validated a prompt, specific and quite simple method for quantitative determination of sildenafil and its active metabolite - N-desmethyl sildenafil concentrations in the human blood using deuterium labeled internal standards. Direct liquid-liquid extraction procedure was utilized to extract the analytes from the blood plasma.Methods. Contents of sildenafil and its metabolite in supernatant were determined by means of the high performance liquid chromatography / tandem mass spectrometric detection technique. Ionization of sildenafil, N-desmethyl sildenafil, sildenafil-d8 and N-desmethyl sildenafil-d8 was performed in the positive electrospray mode (ESI, Positive). Detection of the analytes was carried out in the multi reactions monitoring (MRM) regimen with the following m/z values for selected parent ions: 475,30; 483,20; 461,20 and 469,20, respectively. The daughter ion m/z value was selected to be 283,10 for all analytes.Results. Analytical method proposed proved to demonstrate reliable accuracy and reproducibility for both analytes and has been validated within linear range 5,05-1009,92 ng/ml for sildenafil and 2,24-400,84 ng/mL for N-desmethyl sildenafil with correlation coefficient (r2) equaled to 0.9975 and 0.9973, respectively.Conclusions. It was developed and validated a simple, specific and sensitive HPLC-MS/MS method for quantitative determination of sildenafil and its active metabolite N-desmethyl sildenafil concentrations in human blood plasma utilizing stable isotope labeled internal standards β deuterated sildenafil-d8 and N-desmethyl sildenafil- d8. Important feature of the method was a modified preanalytical procedures of biological samples preparation β direct liquid-liquid extraction that allowed to avoid laborious and time-consuming procedures such as evaporation to concentrate the samples with consequent recovery of dry residue, as well as to refuse from expensive solid-phase extraction. Application of the deuterium labeled internal standards allowed to suppress a biological matrix effect drastically, as well as to reach target LLOQ level. Experimental data obtained in the course of full validation of the method proposed that was performed in accordance with approved national and international technical and regulatory requirements, allowed to affirm high specificity, sensitivity, accuracy, reproducibility and efficiency of the method.Π¦Π΅Π»Ρ. ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π±ΠΈΠΎΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π±Π»Π΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° (ΡΠ°Π±Π»Π΅ΡΠΊΠΈ Β«Π’Π΅Π³ΡΡΠΌΒ» 100 ΠΌΠ³), ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΠΠΠ Β«ΠΠΠ€ Β«ΠΠΈΠΊΡΠΎΡ
ΠΈΠΌΒ» (Π³. Π ΡΠ±Π΅ΠΆΠ½ΠΎΠ΅, Π£ΠΊΡΠ°ΠΈΠ½Π°) Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ Π²Π°Π»ΠΈΠ΄ΠΈΡΠΎΠ²Π°Π½ Π±ΡΡΡΡΡΠΉ, ΠΏΡΠΎΡΡΠΎΠΉ ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° - N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ², ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π°ΡΠΎΠΌΠ°ΠΌΠΈ Π΄Π΅ΠΉΡΠ΅ΡΠΈΡ. ΠΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈΠ· ΠΏΠ»Π°Π·ΠΌΡ ΠΊΡΠΎΠ²ΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΡΠΌΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ-ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ.ΠΠ΅ΡΠΎΠ΄Ρ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π² Π½Π°Π΄ΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ Ρ ΡΠ°Π½Π΄Π΅ΠΌΠ½ΡΠΌ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. ΠΠΎΠ½ΠΈΠ·Π°ΡΠΈΡ cΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°, N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°, cΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°-d8 ΠΈ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π°-d8 ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ (ESI, Positive). ΠΡΠΈ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³ ΠΌΡΠ»ΡΡΠΈΡΠ΅Π°ΠΊΡΠΈΠΉ (MRM) Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΈΡ
ΠΈΠΎΠ½ΠΎΠ² Ρ m/z 475,30; 483,20; 461,20; 469,20. ΠΠΎΡΠ΅ΡΠ½ΠΈΠΉ ΠΈΠΎΠ½ Π±ΡΠ» Π²ΡΠ±ΡΠ°Π½ Ρ m/z 283,10 Π΄Π»Ρ Π²ΡΠ΅Ρ
Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π Ρ
ΠΎΠ΄Π΅ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 5,05-1009,92 Π½Π³/ΠΌΠ» Π΄Π»Ρ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ 2,24-400,84 Π½Π³/ΠΌΠ» Π΄Π»Ρ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ (r2) ΡΠΎΡΡΠ°Π²ΠΈΠ» 0,9975 ΠΈ 0,9973 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»Π° ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Π° Π½Π°Π΄ΡΠΆΠ½Π°Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ
Π°Π½Π°Π»ΠΈΡΠΎΠ².ΠΡΠ²ΠΎΠ΄Ρ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΈ Π²Π°Π»ΠΈΠ΄ΠΈΡΠΎΠ²Π°Π½ ΠΏΡΠΎΡΡΠΎΠΉ, ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΠΠΠ₯-ΠΠ‘/ΠΠ‘ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° ΠΈ Π΅Π³ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ° N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΠΌΠΈ ΠΈΠ·ΠΎΡΠΎΠΏΠ°ΠΌΠΈ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠΎΠ² - ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»-d8 ΠΈ N-Π΄Π΅ΡΠΌΠ΅ΡΠΈΠ» ΡΠΈΠ»Π΄Π΅Π½Π°ΡΠΈΠ»- d8. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΠΊΡΠΏΡΠ΅ΡΡ-ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ Π½Π° ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΎΠ±ΠΎΠΈΡ
Π°Π½Π°Π»ΠΈΡΠΎΠ² Π² Π½Π°Π΄ΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π±Π΅Π· ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ
ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΈΡ
ΠΈ Π²ΡΠ΅ΠΌΡΠ·Π°ΡΡΠ°ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅Π΄ΡΡ, ΠΊΠ°ΠΊ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Ρ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΡ
ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΡΠΊΠ° ΠΈΠ»ΠΈ Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠ΅ΠΉ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² Ρ
ΠΎΠ΄Π΅ ΠΏΠΎΠ»Π½ΠΎΠΉ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΌ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΌ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ, Π° ΡΠ°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ Π²ΡΡΠΎΠΊΡΡ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ, ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΡΠΎΡΠ½ΠΎΡΡΡ, Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΠΎΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠ³ΠΎ Π½Π°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°
Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared
Traditional groups meetings are an inefficient and ineffective method for making forecasts and decisions. We compare two structured alternatives to traditional meetings: the Delphi technique and prediction markets. Delphi is relatively simple and cheap to implement and has been adopted for diverse applications in business and government since its origins in the 1950s. It can be used for nearly any forecasting, estimation, or decision making problem not barred by complexity or ignorance. While prediction markets were used more than a century ago, their popularity waned until more recent times. Prediction markets can be run continuously, and they motivate participation and participants to reveal their true beliefs. On the other hand, they need many participants and clear outcomes in order to determine pay-offs. Moreover, translating knowledge into a price is not intuitive to everyone and constructing contracts that will provide a useful forecast may not be possible for some problems. It is difficult to maintain confidentiality with markets and they are vulnerable to manipulation. Delphi is designed to reveal panelistsβ knowledge and opinions via their forecasts and the reasoning they provide. This format allows testing of knowledge and learning by panelists as they refine their forecasts but may also lead to conformity due to group pressure. The reasoning provided as an output of the Delphi process is likely to be reassuring to forecast users who are uncomfortable with the βblack boxβ nature of prediction markets. We consider that, half a century after its original development, Delphi is under-utilized
Phylogenomics revealed migration routes and adaptive radiation timing of holarctic malaria mosquito species of the Maculipennis group
BackgroundPhylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics.ResultsTo reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group.ConclusionsOur phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia
Natural Selection Equally Supports the Human Tendencies in Subordination and Domination: A Genome-Wide Study With in silico Confirmation and in vivo Validation in Mice
We proposed the following heuristic decision-making rule: βIF {an excess of a protein relating to the nervous system is an experimentally known physiological marker of low pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism (SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be a SNP marker of the tendency in dominance} WHILE {underexpression corresponds to subordination} AND vice versa.β Using this decision-making rule, we analyzed 231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems that encode neurotrophic and growth factors, interleukins, neurotransmitters, receptors, transporters, and enzymes. These proteins are known as key factors of human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter region upstream of the position where the protein-coding transcript starts, which were retrieved from databases Ensembl and dbSNP using our previously created public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein (TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to the dominance and the subordination, respectively, were uncovered. On this basis, we determined that 231 human genes under study are subject to natural selection against underexpression (significance p < 0.0005), which equally supports the human tendencies in domination and subordination such as the norm of a reaction (plasticity) of the human social hierarchy. These findings explain vertical transmission of domination and subordination traits previously observed in rodent models. Thus, the results of this study equally support both sides of the century-old unsettled scientific debate on whether both aggressiveness and the social hierarchy among humans are inherited (as suggested by Freud and Lorenz) or are due to non-genetic social education, when the children are influenced by older individuals across generations (as proposed by Berkowitz and Fromm)
Π‘ΡΡΠ°ΡΠ½Ρ ΡΡΠ΅Π½Π΄ΠΈ ΠΏΡΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠ°Ρ ΡΠ²ΡΡΠ² Π· ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ°ΠΌΠΈ
Π£ Π·Π±ΡΡΠ½ΠΈΠΊΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ² ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΡΡ Π²ΠΈΡΠ²ΡΡΠ»Π΅Π½ΠΎ ΡΠΎΠ±ΠΎΡΠΈ ΡΡΠ½Π°Π»ΡΡΡΡΠ² Π£ΡΠ΅ΡΠΊΡΠ°ΡΠ½ΡΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ½ΠΊΡΡΡΡ ΡΡΡΠ΄Π΅Π½ΡΡΡΠΊΠΈΡ
Π½Π°ΡΠΊΠΎΠ²ΠΈΡ
ΡΠΎΠ±ΡΡ 2018β2019 Π½Π°Π²ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΡ Π· Β«Π£ΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ°ΠΌΠΈΒ» ΠΉ ΡΡΡΠ°ΡΠ½Ρ ΡΡΠ΅Π½Π΄ΠΈ ΠΏΡΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠ°Ρ
ΡΠ²ΡΡΠ² Π· ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ°ΠΌΠΈ, ΡΠΊΡ Π±ΡΠ»ΠΈ ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Ρ Π½Π° Π½Π°ΡΠΊΠΎΠ²ΠΎ-ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΡΠΉ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΡΡ Π² ΠΌ. ΠΡΡΡΠΊΡ 5 ΠΊΠ²ΡΡΠ½Ρ 2019 Ρ. ΠΠ±ΡΡΠ½ΠΈΠΊ ΡΠΎΠ·ΡΠ°Ρ
ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΡΠΈΡΠΎΠΊΠ΅ ΠΊΠΎΠ»ΠΎ ΡΠ°Ρ
ΡΠ²ΡΡΠ² Π· ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ°ΠΌΠΈ, ΡΠΏΠ΅ΡΡΠ°Π»ΡΡΡΡΠ², ΡΠΎ ΠΏΡΠ°ΡΡΡΡΡ Ρ ΡΡΡΡΠΊΡΡΡΠ½ΠΈΡ
ΠΏΡΠ΄ΡΠΎΠ·Π΄ΡΠ»Π°Ρ
ΠΎΡΠ³Π°Π½ΡΠ² Π΄Π΅ΡΠΆΠ°Π²Π½ΠΎΡ Π²Π»Π°Π΄ΠΈ ΠΉ ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ, Π΅ΠΊΠΎΠ½ΠΎΠΌΡΡΡΡΠ², Π²ΠΈΠΊΠ»Π°Π΄Π°ΡΡΠ², Π°ΡΠΏΡΡΠ°Π½ΡΡΠ², Π·Π΄ΠΎΠ±ΡΠ²Π°ΡΡΠ² Ρ ΡΡΡΠ΄Π΅Π½ΡΡΠ², Π° ΡΠ°ΠΊΠΎΠΆ ΡΡΡΡ
, Ρ
ΡΠΎ ΡΡΠΊΠ°Π²ΠΈΡΡΡΡ ΡΡΡΠ°ΡΠ½ΠΈΠΌΠΈ ΡΡΠ΅Π½Π΄Π°ΠΌΠΈ ΠΏΡΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΡΠ°Ρ
ΡΠ²ΡΡΠ² Π· ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ°ΠΌΠΈ
- β¦