31 research outputs found

    Fast spectroscopic mapping of two-dimensional quantum materials

    Full text link
    The discovery of quantum materials entails extensive spectroscopic studies that are carried out against multitudes of degrees of freedom, such as magnetic field, location, temperature, or doping. As this traditionally involves two or more serial measurement tasks, spectroscopic mapping can become excruciatingly slow. We demonstrate orders of magnitude faster measurements through our combination of sparse sampling and parallel spectroscopy. We exemplify our concept using quasiparticle interference imaging of Au(111) and Bi2Sr2CaCu2O8+δ (Bi2212), as two well-known model systems. Our method is accessible, straightforward to implement with existing setups, and can be easily extended to promote gate or field spectroscopy. In view of further substantial speed advantages, it is setting the stage to fundamentally promote the discovery of quantum materials

    Creating and Probing Electron Whispering Gallery Modes in Graphene

    Get PDF
    Designing high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean surfaces. Here we demonstrate an entirely different approach, inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's unique properties, namely gate-tunable light-like carriers, we create Whispering Gallery Mode (WGM) resonators defined by circular pn-junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range, independently and in situ. The confined modes, revealed through characteristic resonances in the tunneling spectrum, originate from Klein scattering at pn junction boundaries. The WGM-type confinement and resonances are a new addition to the quantum electron-optics toolbox, paving the way to real-world electronic lenses and resonators

    Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance

    Full text link
    Electron spin resonance with a scanning tunneling microscope (ESR-STM) combines the high energy resolution of spin resonance spectroscopy with the atomic scale control and spatial resolution of STM. Here we describe the upgrade of a helium-3 STM with a 2D vector-field magnet (Bz = 8.0 T, Bx = 0.8 T) to an ESR-STM. The system is capable of delivering radio frequency (RF) power to the tunnel junction at frequencies up to 30 GHz. We demonstrate magnetic field-sweep ESR for the model system TiH/MgO/Ag(100) and find a magnetic moment of (1.004 ± 0.001) μB. Our upgrade enables to toggle between a DC mode, where the STM is operated with the regular control electronics, and an ultrafast-pulsed mode that uses an arbitrary waveform generator for pump-probe spectroscopy or reading of spin-states. Both modes allow for simultaneous radiofrequency excitation, which we add via a resistive pick-off tee to the bias voltage path. The RF cabling from room temperature to the 350 mK stage has an average attenuation of 18 dB between 5 and 25 GHz. The cable segment between the 350 mK stage and the STM tip presently attenuates an additional 34+5−3 dB from 10 to 26 GHz and 38+3−2 dB between 20 and 30 GHz. We discuss our transmission losses and indicate ways to reduce this attenuation. We finally demonstrate how to synchronize the arrival times of RF and DC pulses coming from different paths to the STM junction, a prerequisite for future pulsed ESR experiments

    Probing quantum coherence in single-atom electron spin resonance

    Get PDF
    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins

    A scanning tunneling microscope capable of electron spin resonance and pump-probe spectroscopy at mK temperature and in vector magnetic field

    Full text link
    In the last decade, detecting spin dynamics at the atomic scale has been enabled by combining techniques like electron spin resonance (ESR) or pump-probe spectroscopy with scanning tunneling microscopy (STM). Here, we demonstrate an ultra-high vacuum (UHV) STM operational at milliKelvin (mK) and in a vector magnetic field capable of both ESR and pump-probe spectroscopy. By implementing GHz compatible cabling, we achieve appreciable RF amplitudes at the junction while maintaining mK base temperature. We demonstrate the successful operation of our setup by utilizing two experimental ESR modes (frequency sweep and magnetic field sweep) on an individual TiH molecule on MgO/Ag(100) and extract the effective g-factor. We trace the ESR transitions down to MHz into an unprecedented low frequency band enabled by the mK base temperature. We also implement an all-electrical pump-probe scheme based on waveform sequencing suited for studying dynamics down to the nanoseconds range. We benchmark our system by detecting the spin relaxation time T1 of individual Fe atoms on MgO/Ag(100) and note a field strength and orientation dependent relaxation time

    Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface

    Get PDF
    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1=2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1=2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1=2 atoms on surfaces. © 2017 American Physical Society3

    Strain Engineering a 4a×3a4a\times\sqrt{3}a Charge Density Wave Phase in Transition Metal Dichalcogenide 1T-VSe2_2

    Full text link
    We report a rectangular charge density wave (CDW) phase in strained 1T-VSe2_2 thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{\times}{\sqrt{3a}} periodicity, as opposed to the previously reported hexagonal 4a×4a4a\times4a structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same 4a×3a4a\times\sqrt{3}a CDW periodicity and an energy gap of 2ΔCDW=(9.1±0.1)2\Delta_{CDW}=(9.1\pm0.1) meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both 4a×4a4a\times4a and 4a×3a4a\times\sqrt{3}a structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings
    corecore