2,474 research outputs found
Lateness Gene Concerning Photosensitivity Increases Yield, by Applying Low to High Levels of Fertilization, in Rice, a Preliminary Report
Various genes controlling heading time have been reported in rice. An isogenic-line pair of late and early lines “L” and “E” were developed from progenies of the F1 of Suweon 258 × an isogenic line of IR36 carrying Ur1 gene. The lateness gene for photosensitivity that causes the difference between L and E was tentatively designated as “Ex(t)”, although it's chromosomal location is unknown. The present study was conducted to examine the effects of Ex(t) on yield and related traits in a paddy field in two years. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4.00, 9.00 and 18.00 g/m2 in total, being denoted by "N4", "N9" and "N18", respectively, in 2014. L was later in 80%-heading by 18 or 19 days than E. Regarding total brown rice yield (g/m2), L and E were 635 and 577, 606 and 548, and 590 and 501, respectively, at N18, N9 and N4, indicating that Ex(t) increased this trait by 10 to 18%. Ex(t) increased yield of brown rice with thickness above 1.5mm (g/m2), by 9 to 15%. Ex(t) increased spikelet number per panicle by 16 to 22% and spikelet number per m2 by 11 to 18%. Thousand-grain weight (g) was 2 to 4% lower in L than in E. L was not significantly different from E in ripened-grain percentage. Hence, Ex(t) increased yield by increasing spikelet number per panicle. It is suggested that Ex(t) could be utilized to develop high yielding varieties for warmer districts of the temperate zone
The Fulde-Ferrell-Larkin-Ovchinnikov State in the Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2 as Observed in Magnetic Torque Experiments
We present magnetic-torque experiments on the organic superconductor
k-(BEDT-TTF)2Cu(NCS)2 for magnetic fields applied parallel to the 2D
superconducting layers. The experiments show a crossover from a second-order to
a first-order transition when the upper critical field reaches 21 T. Beyond
this field, which we interpret as the Pauli limit for superconductivity, the
upper critical field line shows a pro-nounced upturn and a phase transition
line separates the superconducting state into a low- and a high-field phase. We
interpret the data in the framework of a Fulde-Ferrell-Larkin-Ovchinnikov
state.Comment: 2 pages, 1 figur
Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both polκ and polδ, and both polymerases can be recovered in the same repair complexes. Polκ is recruited to repair sites by ubiquitinated PCNA and XRCC1 and polδ by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on polɛ, recruitment of which is dependent on the alternative clamp loader CTF18-RFC
An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing
The nonlinear optical loop mirror (NOLM) has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB
On the boundary of the dispersion-managed soliton existence
A breathing soliton-like structure in dispersion-managed (DM) optical fiber
system is studied. It is proven that for negative average dispersion the
breathing soliton is forbidden provided that a modulus of average dispersion
exceed a threshold which depends on the soliton amplitude.Comment: LaTeX, 8 pages, to appear in JETP Lett. 72, #3 (2000
- …