8,313 research outputs found
Low-scale Supersymmetry from Inflation
We investigate an inflation model with the inflaton being identified with a
Higgs boson responsible for the breaking of U(1)B-L symmetry. We show that
supersymmetry must remain a good symmetry at scales one order of magnitude
below the inflation scale, in order for the inflation model to solve the
horizon and flatness problems, as well as to account for the observed density
perturbation. The upper bound on the soft supersymmetry breaking mass lies
between 1TeV and 10^3TeV. Interestingly, our finding opens up a possibility
that universes with the low-scale supersymmetry are realized by the
inflationary selection. Our inflation model has rich implications; non-thermal
leptogenesis naturally works, and the gravitino and moduli problems as well as
the moduli destabilization problem can be solved or ameliorated; the
standard-model higgs boson receives a sizable radiative correction if the
supersymmertry breaking takes a value on the high side ~10^3TeV.Comment: 23pages, 3 figures. v2: references adde
A Note on String Field Theory in the Temporal Gauge
In this note, we review the recent developments in the string field theory in
the temporal gauge. (Based on a talk presented by N.I. in the workshop {\it
Quantum Field Theory, Integrable Models and Beyond}, Yukawa Institute for
Theoretical Physics, Kyoto University, 14-18 February 1994.)Comment: 20 pages, KEK-TH-411, LaTex fil
GLIMPSES OF NEPAL : Art Exhibition and Cultural Show at Music Cafe After Eight
Globalization is a modern phenomenon of the human civilization and travelling in order to learn about others’ culture is essential. This thesis introduces cultural tourism in terms of art and creativity. The main aim of this thesis was to successfully organize an event to celebrate the week against racism in Pietarsaari. The preliminary objective of the thesis was to unite multinational people living in Pietarsaari. Another important purpose of this thesis was to analyze if art and culture can upsurge the Nepalese tourism industry.
In this report culture and art were focused on as forms of cultural tourism and portrayed as an important social, physical and mental element of our lives. The methodology used in this report is primary and secondary data analysis. Conduction of a questionnaire that was aimed towards potential target groups helped the authors to access the analytical part of the event and find the conclusions. Event planning, the management process and theories of marketing were used for analyzing the data. After the data was obtained by using a quantitative analysis method, the Statistical Package for the Social Sciences (SPSS) software was used to find reliable results. Nepali culture and art was examined in detail for better understanding during the show.
Finally, assessment and conclusions were derived from the event. The study divulged that most of the visitors preferred the show performed in Music Café After Eight and promotion of Nepali culture was possible. It was known that organizing a variety of shows is challenging whereas it is interesting for the ones who want to enjoy different shows in one place
Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes
Garnet-type Li7La3Zr2O12 (LLZrO) is a candidate solid electrolyte material that is now being intensively optimized for application in commercially competitive solid state Li+ ion batteries. In this study we investigate, by force-field-based simulations, the effects of Ga3+ doping in LLZrO. We confirm the stabilizing effect of Ga3+ on the cubic phase. We also determine that Ga3+ addition does not lead to any appreciable structural distortion. Li site connectivity is not significantly deteriorated by the Ga3+ addition (>90% connectivity retained up to x = 0.30 in Li7–3xGaxLa3Zr2O12). Interestingly, two compositional regions are predicted for bulk Li+ ion conductivity in the cubic phase: (i) a decreasing trend for 0 ≤ x ≤ 0.10 and (ii) a relatively flat trend for 0.10 < x ≤ 0.30. This conductivity behavior is explained by combining analyses using percolation theory, van Hove space time correlation, the radial distribution function, and trajectory density
Antiferromagnetic Exchange Interaction between Electrons on Degenerate LUMOs in Benzene Dianion
We discuss the ground state of Benzene dianion (Bz) on the basis of
the numerical diagonalization method of an effective model of orbitals.
It is found that the ground state can be the spin singlet state, and the
exchange coupling between LUMOs can be antiferromagnetic.Comment: Accepted for publication in J. Phys. Soc. Jpn., 2 pages, 3 figure
Dispersion Interferometer Using a Modulation Amplitude on LHD
Since a dispersion interferometer is insensitive to mechanical vibrations, a vibration compensation system is not necessary. The CO2 laser dispersion interferometer with phase modulations on the Large Helical Device utilizes the new phase extraction method which uses modulation amplitudes and can improve a disadvantage of the original dispersion interferometer: measurement errors caused by variations of detected intensities. The phase variation within ±2 × 1017 m?3 is obtained without vibration compensation system. The measured line averaged electron density with the dispersion interferometer shows good agreement with that with the existing far infrared laser interferometer. Fringe jump errors in high density ranging up to 1.5 × 1020 m?3 can be overcome by a sufficient sampling rate of about 100 kHz
Orienting coupled quantum rotors by ultrashort laser pulses
We point out that the non-adiabatic orientation of quantum rotors, produced
by ultrashort laser pulses, is remarkably enhanced by introducing dipolar
interaction between the rotors. This enhanced orientation of quantum rotors is
in contrast with the behavior of classical paired rotors, in which dipolar
interactions prevent the orientation of the rotors. We demonstrate also that a
specially designed sequence of pulses can most efficiently enhances the
orientation of quantum paired rotors.Comment: 7 pages, 5 figures, to appear in Phys. Rev.
Degenerate dispersive equations arising in the study of magma dynamics
An outstanding problem in Earth science is understanding the method of
transport of magma in the Earth's mantle. Models for this process, transport in
a viscously deformable porous media, give rise to scalar degenerate,
dispersive, nonlinear wave equations. We establish a general local
well-posedness for a physical class of data (roughly ) via fixed point
methods. The strategy requires positive lower bounds on the solution. This is
extended to global existence for a subset of possible nonlinearities by making
use of certain conservation laws associated with the equations. Furthermore, we
construct a Lyapunov energy functional, which is locally convex about the
uniform state, and prove (global in time) nonlinear dynamic stability of the
uniform state for any choice of nonlinearity. We compare the dynamics to that
of other problems and discuss open questions concerning a larger range of
nonlinearities, for which we conjecture global existence.Comment: 27 Pages, 7 figures are not present in this version. See
http://www.columbia.edu/~grs2103/ for a PDF with figures. Submitted to
Nonlinearit
- …