We investigate an inflation model with the inflaton being identified with a
Higgs boson responsible for the breaking of U(1)B-L symmetry. We show that
supersymmetry must remain a good symmetry at scales one order of magnitude
below the inflation scale, in order for the inflation model to solve the
horizon and flatness problems, as well as to account for the observed density
perturbation. The upper bound on the soft supersymmetry breaking mass lies
between 1TeV and 10^3TeV. Interestingly, our finding opens up a possibility
that universes with the low-scale supersymmetry are realized by the
inflationary selection. Our inflation model has rich implications; non-thermal
leptogenesis naturally works, and the gravitino and moduli problems as well as
the moduli destabilization problem can be solved or ameliorated; the
standard-model higgs boson receives a sizable radiative correction if the
supersymmertry breaking takes a value on the high side ~10^3TeV.Comment: 23pages, 3 figures. v2: references adde