133 research outputs found
Signature of structural distortion in optical spectra of YFe2O4 thin film
We report structural, optical, and electro-optical properties of polycrystalline YFe2O4 thin films, deposited on (0001) sapphire substrates using the electron-beam deposition technique. The optical spectra of a 120 nm YFe2O4 show Fe d to d on-site and O 2p to Fe 3d, Y 4d, and Y 5s charge-transfer electronic excitations. Anomalies in the temperature dependence data of the charge-transfer excitations and the splitting of the 4.46 eV charge-transfer peak strongly suggest a structural distortion at 180 ± 10 K. Evidence of such a structural distortion is also manifested in the surface resistance versus temperature data. In addition, the YFe2O4 thin film at low temperatures shows strong electro-optical properties, as high as 9% in the energy range of 1 - 2.5 eV, for applied electric fields up to 500 V.cmâ1
Suppression of Spin Pumping at Metal Interfaces
An electrically conductive metal typically transmits or absorbs a spin
current. Here, we report on evidence that interfacing two metal thin films can
suppress spin transmission and absorption. We examine spin pumping in
ferromagnet/spacer/ferromagnet heterostructures, in which the spacer --
consisting of metallic Cu and Cr thin films -- separates the ferromagnetic
spin-source and spin-sink layers. The Cu/Cr spacer largely suppresses spin
pumping -- i.e., neither transmitting nor absorbing a significant amount of
spin current -- even though Cu or Cr alone transmits a sizable spin current.
The antiferromagnetism of Cr is not essential for the suppression of spin
pumping, as we observe similar suppression with Cu/V spacers where V is a
nonmagnetic analogue of Cr. We speculate that diverse combinations of
spin-transparent metals may form interfaces that suppress spin pumping,
although the underlying mechanism remains unclear. Our work may stimulate a new
perspective on understanding and engineering spin transport in metallic
multilayers
Recommended from our members
Suppression of spin pumping at metal interfaces
An electrically conductive metal typically transmits or absorbs a spin current. Here, we report on evidence that interfacing two metal thin films can suppress spin transmission and absorption. We examine spin pumping in spin-source/spacer/spin-sink heterostructures, where the spacer consists of metallic Cu and Cr thin films. The Cu/Cr spacer largely suppresses spin pumpingâi.e., neither transmitting nor absorbing a significant amount of spin currentâeven though Cu or Cr alone transmits a sizable spin current. The antiferromagnetism of Cr is not essential for the suppression of spin pumping, as we observe similar suppression with Cu/V spacers with V as a nonmagnetic analog of Cr. We speculate that diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping, although the underlying mechanism remains unclear. Our work may stimulate a new perspective on spin transport in metallic multilayers
Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory
We report on a comparison between the theoretically predicted and
experimentally measured spectra of the first-forbidden non-unique -decay
transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The
experimental data were acquired by the EXO-200 experiment during a deployment
of an AmBe neutron source. The ultra-low background environment of EXO-200,
together with dedicated source deployment and analysis procedures, allowed for
collection of a pure sample of the decays, with an estimated
signal-to-background ratio of more than 99-to-1 in the energy range from 1075
to 4175 keV. In addition to providing a rare and accurate measurement of the
first-forbidden non-unique -decay shape, this work constitutes a novel
test of the calculated electron spectral shapes in the context of the reactor
antineutrino anomaly and spectral bump.Comment: Version as accepted by PR
Book Reviews
With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino âtrackâ events from the Northern Hemisphere, while the second analysis uses 2 years of âcascadeâ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than s at 90% CL for dark matter masses above 10 TeV
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption
Neutrinos interact only very weakly, so they are extremely penetrating.
However, the theoretical neutrino-nucleon interaction cross section rises with
energy such that, at energies above 40 TeV, neutrinos are expected to be
absorbed as they pass through the Earth. Experimentally, the cross section has
been measured only at the relatively low energies (below 400 GeV) available at
neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here
we report the first measurement of neutrino absorption in the Earth, using a
sample of 10,784 energetic upward-going neutrino-induced muons observed with
the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting
long paths through the Earth is attenuated compared to a reference sample that
follows shorter trajectories through the Earth. Using a fit to the
two-dimensional distribution of muon energy and zenith angle, we determine the
cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an
order of magnitude higher in energy than previous measurements. The measured
cross section is (stat.) (syst.)
times the prediction of the Standard Model \cite{CooperSarkar:2011pa},
consistent with the expectation for charged and neutral current interactions.
We do not observe a dramatic increase in the cross section, expected in some
speculative models, including those invoking new compact dimensions
\cite{AlvarezMuniz:2002ga} or the production of leptoquarks
\cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445
- âŠ