210 research outputs found

    Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum

    Get PDF
    AbstractCells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively

    Exploration of hydroxymethylation in Kagami-Ogata syndrome caused by hypermethylation of imprinting control regions

    Get PDF
    Primer sequences utilized in BS/oxBS pyrosequencing and cloning-based sequencing. (XLSX 9.68 kb

    Identification of hepta-histidine as a candidate drug for Huntington's disease by in silico-in vitro- in vivo-integrated screens of chemical libraries.

    Get PDF
    We identified drug seeds for treating Huntington's disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD

    Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting

    Get PDF
    Familial recurrent hydatidiform mole (RHM) is a maternal-effect autosomal recessive disorder usually associated with mutations of the NLRP7 gene. It is characterized by HM with excessive trophoblastic proliferation, which mimics the appearance of androgenetic molar conceptuses despite their diploid biparental constitution. It has been proposed that the phenotypes of both types of mole are associated with aberrant genomic imprinting. However no systematic analyses for imprinting defects have been reported. Here, we present the genome-wide methylation profiles of both spontaneous androgenetic and biparental NLRP7 defective molar tissues. We observe total paternalization of all ubiquitous and placenta-specific differentially methylated regions (DMRs) in four androgenetic moles; namely gain of methylation at paternally methylated loci and absence of methylation at maternally methylated regions. The methylation defects observed in five RHM biopsies from NLRP7 defective patients are restricted to lack-of-methylation at maternal DMRs. Surprisingly RHMs from two sisters with the same missense mutations, as well as consecutive RHMs from one affected female show subtle allelic methylation differences, suggesting inter-RHM variation. These epigenotypes are consistent with NLRP7 being a maternal-effect gene and involved in imprint acquisition in the oocyte. In addition, bioinformatic screening of the resulting methylation datasets identified over sixty loci with methylation profiles consistent with imprinting in the placenta, of which we confirm 22 as novel maternally methylated loci. These observations strongly suggest that the molar phenotypes are due to defective placenta-specific imprinting and over-expression of paternally expressed transcripts, highlighting that maternal-effect mutations of NLRP7 are associated with the most severe form of multi-locus imprinting defects in humans

    Planetary period magnetic field oscillations in Saturn's magnetosphere: Postequinox abrupt nonmonotonic transitions to northern system dominance

    Get PDF
    [1] We examine the “planetary period” magnetic field oscillations observed in the “core” region of Saturn's magnetosphere (dipole L ≤ 12), on 56 near‐equatorial Cassini periapsis passes that took place between vernal equinox in August 2009 and November 2012. Previous studies have shown that these consist of the sum of two oscillations related to the northern and southern polar regions having differing amplitudes and periods that had reached near‐equal amplitudes and near‐converged periods ~10.68 h in the interval to ~1 year after equinox. The present analysis shows that an interval of strongly differing behavior then began ~1.5 years after equinox, in which abrupt changes in properties took place at ~6‐ to 8‐month intervals, with three clear transitions occurring in February 2011, August 2011, and April 2012, respectively. These are characterized by large simultaneous changes in the amplitudes of the two systems, together with small changes in period about otherwise near‐constant values of ~10.63 h for the northern system and ~10.69 h for the southern (thus, not reversed postequinox) and on occasion jumps in phase. The first transition produced a resumption of strong southern system dominance unexpected under northern spring conditions, while the second introduced comparably strong northern system dominance for the first time in these data. The third resulted in suppression of all core oscillations followed by re‐emergence of both systems on a time scale of ~85 days, with the northern system remaining dominant but not as strongly as before. This behavior poses interesting questions for presently proposed theoretical scenarios

    Gene expression signatures associated with chronic endometritis revealed by RNA sequencing

    Get PDF
    IntroductionChronic endometritis (CE) is a persistent inflammatory condition of the endometrium characterized by the infiltration of plasma cells in the endometrial stroma. CD138 immunohistochemistry is considered to improve the CE diagnosis rate.MethodsUsing the number of CD138-positive cells equal or greater than five as a diagnostic criterion for CE, we identified 24 CE and 33 non-CE cases among women with infertility. We conducted RNA-sequencing analysis for these 57 cases in total as an attempt to elucidate the molecular pathogenesis of CE and to search for new biomarkers for CE.Results and DiscussionBy comparing CE and non-CE groups, we identified 20 genes upregulated in the endometria of CE patients, including 12 immunoglobulin-related genes and eight non-immunoglobulin genes as differentially expressed genes. The eight genes were MUC5AC, LTF, CAPN9, MESP1, ACSM1, TVP23A, ALOX15, and MZB1. By analyzing samples in the proliferative and secretory phases of the menstrual cycle separately, we also identified four additional non-immunoglobulin genes upregulated in CE endometria: CCDC13 by comparing the samples in the proliferative phase, and OVGP1, MTUS2, and CLIC6 by comparing the samples in the secretory phase. Although the genes upregulated in CE may serve as novel diagnostic markers of CE, many of them were upregulated only in a limited number of CE cases showing an extremely high number of CD138-positive cells near or over one hundred. Exceptionally, TVP23A was upregulated in the majority of CE cases regardless of the number of CD138-positive cells. The upregulation of TVP23A in the endometria of CE cases may reflect the pathophysiology of a cell-type or cell-types intrinsic to the endometrium rather than the accumulation of plasma cells. Our data, consisting of clinical and transcriptomic information for CE and non-CE cases, helped us identify gene expression signatures associated with CE

    Loss of NSD2 causes dysregulation of synaptic genes and altered H3K36 dimethylation in mice

    Get PDF
    Background: Epigenetic disruptions have been implicated in neurodevelopmental disorders. NSD2 is associated with developmental delay/intellectual disability; however, its role in brain development and function remains unclear.Methods: We performed transcriptomic and epigenetic analyses using Nsd2 knockout mice to better understand the role of NSD2 in the brain.Results and discussion: Transcriptomic analysis revealed that the loss of NSD2 caused dysregulation of genes related to synaptic transmission and formation. By analyzing changes in H3 lysine 36 dimethylation (H3K36me2), NSD2-mediated H3K36me2 mainly marked quiescent state regions and the redistribution of H3K36me2 occurred at transcribed genes and enhancers. By integrating transcriptomic and epigenetic data, we observed that H3K36me2 changes in a subset of dysregulated genes related to synaptic transmission and formation. These results suggest that NSD2 is involved in the regulation of genes important for neural function through H3K36me2. Our findings provide insights into the role of NSD2 and improve our understanding of epigenetic regulation in the brain

    Human Oocyte-derived Methylation Differences Persist In The Placenta Revealing Widespread Transient Imprinting

    Get PDF
    Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation

    Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    Get PDF
    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage
    corecore