80 research outputs found

    Development of a multistage laser frequency stabilization for an interferometric gravitational-wave detector

    Get PDF
    Laser frequency stabilization is essential for interferometric gravitational-wave detectors to attain their target sensitivity. We have designed a multistage laser frequency stabilization system which has been applied in the development of the TAMA 300 gravitational-wave detector in Japan. The control topology consisting of two cascaded loops were employed to secure high feedback gain and reliable detector operation and thus allow the best frequency stability and uninterrupted long-term observation. We achieved simultaneously a frequency stability of 5 × 10^(−5) Hz/√HZ , and a common-mode rejection ratio (which reduces the coupling of frequency noise to spurious signals in the detector) of 37 dB. The developed system enabled us to operate TAMA 300 with sufficient sensitivity and stability that it had the potential to register gravitational-wave events. The system was confirmed to be suitable for a gravitational-wave detector from the observation run of TAMA 300

    Buffer gas induced collision shift for the 88^{88}Sr 1S03P1\bf{^1S_0-^3P_1} clock transition

    Full text link
    Precision saturation spectroscopy of the 88Sr1S03P1^{88}{\rm Sr} ^1S_0-^3P_1 is performed in a vapor cell filled with various rare gas including He, Ne, Ar, and Xe. By continuously calibrating the absolute frequency of the probe laser, buffer gas induced collision shifts of \sim kHz are detected with gas pressure of 1-20 mTorr. Helium gave the largest fractional shift of 1.6×109Torr11.6 \times 10^{-9} {\rm Torr}^{-1}. Comparing with a simple impact calculation and a Doppler-limited experiment of Holtgrave and Wolf [Phys. Rev. A {\bf 72}, 012711 (2005)], our results show larger broadening and smaller shifting coefficient, indicating effective atomic loss due to velocity changing collisions. The applicability of the result to the 1S03P0^1S_0-^3P_0 optical lattice clock transition is also discussed

    Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

    Full text link
    This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.Comment: Accepted by Phys.Rev.Lett.; 10 pages, 4 figure

    All-optical link for direct comparison of distant optical clocks

    Full text link
    We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the propagation through a fiber link. Transfer stabilities of 2×10152\times10^{-15} at 1 second and 4×10184\times10^{-18} at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below 2×10152\times10^{-15} at 1 second and 7×10177\times10^{-17} at 1000 seconds. The system was available for the direct comparison of two distant 87^{87}Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the reproducibility of optical frequency standards

    Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87Sr

    Full text link
    We demonstrated transferring the stability of one highly stable clock laser operating at 729 nm to another less stable laser operating at 698 nm. The two different wavelengths were bridged using an optical frequency comb. The improved stability of the clock laser at 698 nm enabled us to evaluate the systematic frequency shifts of the Sr optical lattice clock with shorter averaging time. We determined the absolute frequency of the clock transition 1S0 - 3P0 in 87Sr to be 429 228 004 229 873.9 (1.4) Hz referenced to the SI second on the geoid via International Atomic Time (TAI)

    Direct Comparison of Distant Optical Lattice Clocks at the 101610^{-16} Uncertainty

    Full text link
    Fiber-based remote comparison of 87^{87}Sr lattice clocks in 24 km distant laboratories is demonstrated. The instability of the comparison reaches 5×10165\times10^{-16} over an averaging time of 1000 s, which is two orders of magnitude shorter than that of conventional satellite links and is limited by the instabilities of the optical clocks. By correcting the systematic shifts that are predominated by the differential gravitational redshift, the residual fractional difference is found to be (1.0±7.3)×1016(1.0\pm7.3)\times10^{-16}, confirming the coincidence between the two clocks. The accurate and speedy comparison of distant optical clocks paves the way for a future optical redefinition of the second

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024
    corecore