31 research outputs found

    Metformin-associated lactic acidosis in an intensive care unit

    Get PDF
    International audienceIntroduction Metformin-associated lactic acidosis (MALA) is aclassic side effect of metformin and is known to be a severedisease with a high mortality rate. The treatment of MALA withdialysis is controversial and is the subject of many case reportsin the literature. We aimed to assess the prevalence of MALA ina 16-bed, university-affiliated, intensive care unit (ICU), and theeffect of dialysis on patient outcome.Methods Over a five-year period, we retrospectively identifiedall patients who were either admitted to the ICU with metforminas a usual medication, or who attempted suicide by metforminingestion. Within this population, we selected patientspresenting with lactic acidosis, thus defining MALA, anddescribed their clinical and biological features.Results MALA accounted for 0.84% of all admissions duringthe study period (30 MALA admissions over five years) and wasassociated with a 30% mortality rate. The only factorsassociated with a fatal outcome were the reason for admissionin the ICU and the initial prothrombin time. Although patientswho went on to haemodialysis had higher illness severity scores,as compared with those who were not dialysed, the mortalityrates were similar between the two groups (31.3% versus28.6%).Conclusions MALA can be encountered in the ICU severaltimes a year and still remains a life-threatening condition.Treatment is restricted mostly to supportive measures, althoughhaemodialysis may possess a protective effect

    Impact of safety factor and magnetic shear profiles on edge turbulence in circular limited geometry

    Get PDF
    International audienceThe impact of magnetic configuration on edge turbulence properties in circular limiter geometry is investigated using TOKAM3X, a three-dimensional (3D), first-principle, fluid code for edge plasma. The theoretical spatial tilting of magnetic shear on turbulence fluctuations is recovered. Magnetic shear is found to generate or enhance poloidal high/low field sides (HFS/LFS) and up/down asymmetries. A simulation mimicking the impact of an X-point on circular limiter geometry leads to the formation of two transport barriers that are stable in time, thus leading to the improvement of core particle confinement and to reduction of radial turbulent transport. The magnetic shear, which also strongly enhances the E × B shear, is responsible for the barrier formation

    Implementation of drift velocities and currents in SOLEDGE2D-EIRENE

    Get PDF
    International audienceIn order to improve cross-field transport description, drifts and currents have been implemented in SOLEDGE2D-EIRENE. The derivation of an equation for the electric potential is recalled. The resolution of current equation is tested in a simple slab case. WEST divertor simulations in forward-B and reverse-B fields are also discussed. A significant increase of ExB shear is observed in the forward-B configuration that could explain a favorable L-H transition in this case

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Etude de la dynamique des barrières de transport spontanées et forcées dans le plasma de bord des tokamaks

    No full text
    Les réacteurs à fusion thermonucléaire sont une des solutions à moyen - long terme pour transiter vers un monde dominé par des énergies décarbonées. Les réactions de fusion requièrent des températures si extrêmes que le plasma d'isotopes d'hydrogène doit être confiné magnétiquement dans une forme torique. Le maintien d'un tel niveau élevé de confinement des particules et de l'énergie reste un problème clé. Les réacteurs devraient opérer dans un régime de confinement avancé, le mode H, dans lequel le transport turbulent est réduit par la présence d'une barrière de transport dans le plasma de bord. Ce régime est observé dans toutes les machines actuelles mais demeure en partie incompris. Dans cette thèse, plusieurs mécanismes impliqués dans la transition vers le mode H sont étudiés. Pour cela, plusieurs outils de simulation numériques sont utilisés avec une complexité croissante. Des mécanismes de base, supposés jouer un rôle dans le développement des barrières de transport et impacter la turbulence, sont détaillés et analysés avec des modèles simples. En allant vers des modèles plus complexes, la pertinence de cette physique pour le mode H est discutée au regard des observations expérimentales. La géométrie magnétique et notamment le cisaillement magnétique sont en particulier désignés comme étant des acteurs clés.Thermonuclear fusion reactors are one of the mid to long term solutions to transit towards a world dominated by carbon-free energy. Extreme temperatures are required for fusion reactions and the plasma of hydrogen isotopes must be magnetically confined in a torus shape. Sustaining such high level of particle and energy confinements is a key issue. Reactors are expected to operate in a high confinement regime - the H-mode - in which turbulent transport is reduced by the presence of a transport barrier in the edge plasma. This regime is observed in all current devices but remains largely miss-understood. In this thesis, we investigate several mechanisms involved in the transition towards H-mode. For that purpose, we use a range of numerical simulation tools of increasing complexity. Using simple models, we first highlight and analyze basic mechanisms likely to play a role in the on-set of transport barriers and in their impact on turbulence. Moving progressively to more complex models, we discuss the relevance of these physics in explaining experimental observations. The magnetic geometry and especially the magnetic shear are pointed out as key players

    Drift-driven cross-field transport and Scrape-Off Layer width in the limit of low anomalous transport

    Get PDF
    The impact of the ∇B-drift in the cross-field transport and its effect on the density and power scrape-off layer (SOL) width in the limit of low anomalous transport is studied with the fluid code SolEdge2D. In a first part of the work, the simulations are run with an isothermal reduced fluid model. It is found that a ∇B-drift dominated regime is reached in all geometries studied (JET-like, ASDEX-like and circular analytic geometries), and that the transition toward this regime comes along with the apparition of supersonic shocks, and a complex parallel equilibrium. The parametric dependencies of the SOL width in this regime are investigated, and the temperature and the poloidal magnetic field are found to be the principal parameters governing the evolution of the SOL width. In the second part of this paper, the impact of additional physics is studied (inclusion of the centrifugal drift, self-consistent variation of temperature and the treatment of the neutral species). The addition of centrifugal drift and neutral species are shown to play a role in the establishment of the parallel equilibrium, impacting the SOL's width. Finally, the numerical results are compared with the estimate of the Goldston's heuristic drift based model (HD-model), which has showed good agreement with experimental scaling laws. We find that the particles SOL's widths in the ∇B-drift dominated regime are, at least, two times smaller than the estimate of the HD-model. Moreover, in the parametric dependencies proposed by the HD-model, only the dependency with B pol is retrieved but not the one on T

    Tokamak Edge Plasma Turbulence Interaction with Magnetic X-Point in 3D Global Simulations

    Get PDF
    Turbulence in the edge plasma of a tokamak is a key actor in the determination of the confinement properties. The divertor configuration seems to be beneficial for confinement, suggesting an effect on turbulence of the particular magnetic geometry introduced by the X-point. Simulations with the 3D fluid turbulence code TOKAM3X are performed here to evaluate the impact of a diverted configuration on turbulence in the edge plasma, in an isothermal framework. The presence of the X-point is found, locally, to affect both the shape of turbulent structures and the amplitude of fluctuations, in qualitative agreement with recent experimental observations. In particular, a quiescent region is found in the divertor scrape-off layer (SOL), close to the separatrix. Globally, a mild transport barrier spontaneously forms in the closed flux surfaces region near the separatrix, differently from simulations in limiter configuration. The effect of turbulence-driven Reynolds stress on the formation of the barrier is found to be weak by dedicated simulations, while turbulence damping around the X-point seems to globally reduce turbulent transport on the whole flux surface. The magnetic shear is thus pointed out as a possible element that contributes to the formation of edge transport barriers
    corecore