152 research outputs found

    An Expert Discussion on Autism and Empathy

    Get PDF
    Autism in Adulthood strives to be a home for constructive interprofessional dialogue on pressing issues that affect the lives of autistic adults. We do this in a number of ways. One is to hold roundtable discussions with experts in the field. Our first roundtable discussion concerns the topic of autism and empathy, a hotly debated construct within and outside academia.1 As early as 1962, psychologists described children with “autistic psychopathy” as being “unable to achieve empathy.”2 An empathy deficit has since become a core feature in many conceptualizations of autism, including the theory of mind (or mind-blindness) model and the empathizing-systematizing model.3 Researchers have distinguished between cognitive empathy (or theory of mind; the capacity to understand another person's perspective or mental state) and emotional or affective empathy (the capacity to experience affective reactions to the observed experiences of others), asserting that autistic individuals have deficits in the former, but not in the latter.4,5 Even this position, however, has been widely criticized by autistic individuals in online forums. For example, purported deficits in cognitive empathy may be a problem of experiencing too much emotional empathy or of needing more time to process empathy's cognitive aspects.6 Or they may be due to a breakdown in mutual understanding between people who experience the world differently (and may apply just as much to neurotypical people failing to empathize with autistic people as it does in the opposite direction).7 Autistic adults often argue that the notion that autistic individuals lack empathy or theory of mind is dehumanizing and perpetuates dangerous stereotypes and oversimplifications.6 Following is a transcript of our roundtable discussion, with minor edits for clarity

    EVEREST: automatic identification and classification of protein domains in all protein sequences

    Get PDF
    BACKGROUND: Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs), begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. RESULTS: Processing the Swiss-Prot section of the UniProt Knoledgebase, release 7.2, EVEREST defines 20,230 domains, covering 85% of the amino acids of the Swiss-Prot database. EVEREST annotates 11,852 proteins (6% of the database) that are not annotated by Pfam A. In addition, in 43,086 proteins (20% of the database), EVEREST annotates a part of the protein that is not annotated by Pfam A. Performance tests show that EVEREST recovers 56% of Pfam A families and 63% of SCOP families with high accuracy, and suggests previously unknown domain families with at least 51% fidelity. EVEREST domains are often a combination of domains as defined by Pfam or SCOP and are frequently sub-domains of such domains. CONCLUSION: The EVEREST process and its output domain families provide an exhaustive and validated view of the protein domain world that is automatically generated from sequence data. The EVEREST library of domain families, accessible for browsing and download at [1], provides a complementary view to that provided by other existing libraries. Furthermore, since it is automatic, the EVEREST process is scalable and we will run it in the future on larger databases as well. The EVEREST source files are available for download from the EVEREST web site

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups

    Face recognition and visual search strategies in autism spectrum disorders: Amending and extending a recent review by Weigelt et al.

    Get PDF
    The purpose of this review was to build upon a recent review by Weigelt et al. which examined visual search strategies and face identification between individuals with autism spectrum disorders (ASD) and typically developing peers. Seven databases, CINAHL Plus, EMBASE, ERIC, Medline, Proquest, PsychInfo and PubMed were used to locate published scientific studies matching our inclusion criteria. A total of 28 articles not included in Weigelt et al. met criteria for inclusion into this systematic review. Of these 28 studies, 16 were available and met criteria at the time of the previous review, but were mistakenly excluded; and twelve were recently published. Weigelt et al. found quantitative, but not qualitative, differences in face identification in individuals with ASD. In contrast, the current systematic review found both qualitative and quantitative differences in face identification between individuals with and without ASD. There is a large inconsistency in findings across the eye tracking and neurobiological studies reviewed. Recommendations for future research in face recognition in ASD were discussed

    PDE8 Regulates Rapid Teff Cell Adhesion and Proliferation Independent of ICER

    Get PDF
    BACKGROUND: Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS: We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE: Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells
    corecore