7 research outputs found

    Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland

    Get PDF
    No single solution currently exists to achieve the utopian desire of zero fossil fuel electricity generation. Until such time, it is evident that the energy mix will contain a large variation in stochastic and intermittent sources of renewable energy such as wind power. The increasing prominence of wind power in pursuit of legally binding European energy targets enables policy makers and conventional generating companies to plan for the unique challenges such a natural resource presents. This drive for wind has been highly beneficial in terms of security of energy supply and reducing greenhouse gas emissions. However, it has created an unusual ally in natural gas. This paper outlines the suitability and challenges faced by gas generating units in their utilisation as key assets for renewable energy integration and the transition to a low carbon future. The Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Transmission Trading Agreement Market are the backdrop to this analysis. Both of these energy markets have a reliance on gas generation matching the proliferation of wind power. The unlikely and mostly ignored relationship between natural gas generation and wind power due to policy decisions and market forces is the necessity of gas to act as a bridging fuel. This review finds gas generation to be crucially important to the continued growth of renewable energy. Additionally, it is suggested that power market design should adequately reward the flexibility required to securely operate a power system with high penetrations of renewable energy, which in most cases is provided by gas generation

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text

    Peptide Biosynthesis: Prohormone Convertases 1/3 and 2

    No full text

    Small Bowel Capsule Endoscopy

    No full text
    corecore