79 research outputs found

    Reversing Single Sessions

    Get PDF
    Session-based communication has gained a widespread acceptance in practice as a means for developing safe communicating systems via structured interactions. In this paper, we investigate how these structured interactions are affected by reversibility, which provides a computational model allowing executed interactions to be undone. In particular, we provide a systematic study of the integration of different notions of reversibility in both binary and multiparty single sessions. The considered forms of reversibility are: one for completely reversing a given session with one backward step, and another for also restoring any intermediate state of the session with either one backward step or multiple ones. We analyse the costs of reversing a session in all these different settings. Our results show that extending binary single sessions to multiparty ones does not affect the reversibility machinery and its costs

    A Proof Assistant Based Formalisation of a Subset of Sequential Core Erlang

    Get PDF
    We present a proof-assistant-based formalisation of a subset of Erlang, intended to serve as a base for proving refactorings correct. After discussing how we reused concepts from related work, we show the syntax and semantics of our formal description, including the abstractions involved (e.g. the concept of a closure). We also present essential properties of the formalisation (e.g. determinism) along with the summary of their machine-checked proofs. Finally, we prove expression pattern equivalences which can be interpreted as simple local refactorings

    Design-By-Contract for Flexible Multiparty Session Protocols

    Get PDF
    Choreographic models support a correctness-by-construction principle in distributed programming. Also, they enable the automatic generation of correct message-based communication patterns from a global specification of the desired system behaviour. In this paper we extend the theory of choreography automata, a choreographic model based on finite-state automata, with two key features. First, we allow participants to act only in some of the scenarios described by the choreography automaton. While this seems natural, many choreographic approaches in the literature, and choreography automata in particular, forbid this behaviour. Second, we equip communications with assertions constraining the values that can be communicated, enabling a design-by-contract approach. We provide a toolchain allowing to exploit the theory above to generate APIs for TypeScript web programming. Programs communicating via the generated APIs follow, by construction, the prescribed communication pattern and are free from communication errors such as deadlocks

    A MAPE-K Approach to Autonomic Microservices

    Get PDF
    Microservices are an emerging architectural style advocating for small loosely-coupled services in order to maximize scalability and adaptability. In order to help IT personnel, adaptability can be put (completely or partially) under the responsibility of the system using autonomic techniques, e.g., underpinned by a MAPE-K control loop. This paper discusses possible trade-offs, challenges and support techniques for soft-ware architects involved in building autonomic microservice-based systems

    A case study for reversible computing: Reversible debugging of concurrent programs

    Get PDF
    Reversible computing allows one to run programs not only in the usual forward direction, but also backward. A main application area for reversible computing is debugging, where one can use reversibility to go backward from a visible misbehaviour towards the bug causing it. While reversible debugging of sequential systems is well understood, reversible debugging of concurrent and distributed systems is less settled. We present here two approaches for debugging concurrent programs, one based on backtracking, which undoes actions in reverse order of execution, and one based on causal consistency, which allows one to undo any action provided that its consequences, if any, are undone beforehand. The first approach tackles an imperative language with shared memory, while the second one considers a core of the functional message-passing language Erlang. Both the approaches are based on solid formal foundations

    On the relative expressiveness of higher-order session processes

    Get PDF
    By integrating constructs from the λ-calculus and the π-calculus, in higher-order process calculi exchanged values may contain processes. This paper studies the relative expressiveness of HOπ, the higher-order π-calculus in which communications are governed by session types. Our main discovery is that HO, a subcalculus of HOπ which lacks name-passing and recursion, can serve as a new core calculus for session-typed higher-order concurrency. By exploring a new bisimulation for HO, we show that HO can encode HOπ fully abstractly (up to typed contextual equivalence) more precisely and efficiently than the first-order session π-calculus (π). Overall, under session types, HOπ, HO, and π are equally expressive; however, HOπ and HO are more tightly related than HOπ and π

    A Case Study for Reversible Computing: Reversible Debugging of Concurrent Programs

    Get PDF
    International audienceReversible computing allows one to run programs not only in the usual forward direction, but also backward. A main application area for reversible computing is debugging, where one can use reversibility to go backward from a visible misbehaviour towards the bug causing it. While reversible debugging of sequential systems is well understood, reversible debugging of concurrent and distributed systems is less settled. We present here two approaches for debugging concurrent programs, one based on backtracking, which undoes actions in reverse order of execution, and one based on causal consistency, which allows one to undo any action provided that its consequences, if any, are undone beforehand. The first approach tackles an imperative language with shared memory, while the second one considers a core of the functional message-passing language Erlang. Both the approaches are based on solid formal foundations

    Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning

    Get PDF
    Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.

    On the expressiveness of forwarding in higher-order communication

    Get PDF
    Abstract. In higher-order process calculi the values exchanged in communications may contain processes. There are only two capabilities for received processes: execution and forwarding. Here we propose a limited form of forwarding: output actions can only communicate the parallel composition of statically known closed processes and processes received through previously executed input actions. We study the expressiveness of a higher-order process calculus featuring this style of communication. Our main result shows that in this calculus termination is decidable while convergence is undecidable.

    Reasoning About a Service-oriented Programming Paradigm

    Full text link
    This paper is about a new way for programming distributed applications: the service-oriented one. It is a concept paper based upon our experience in developing a theory and a language for programming services. Both the theoretical formalization and the language interpreter showed us the evidence that a new programming paradigm exists. In this paper we illustrate the basic features it is characterized by
    • …
    corecore