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Abstract. We present a proof-assistant-based formalisation of a subset
of Erlang, intended to serve as a base for proving refactorings correct.
After discussing how we reused concepts from related work, we show the
syntax and semantics of our formal description, including the abstrac-
tions involved (e.g. the concept of a closure). We also present essential
properties of the formalisation (e.g. determinism) along with the sum-
mary of their machine-checked proofs. Finally, we prove expression pat-
tern equivalences which can be interpreted as simple local refactorings.

Keywords: Erlang formalisation · Formal semantics · Machine-checked
formalisation · Operational semantics · Term rewrite system · Coq

1 Introduction

There are a number of language processors, development and refactoring tools for
mainstream languages, but most of these tools are not theoretically well-founded:
they lack a mathematically precise description of what they do to the source
code. In particular, refactoring tools are expected to change programs without
affecting their behaviour, but in practice, this property is typically verified by
regression testing alone. Higher assurance can be achieved by making a formal
argument – a proof – about this property, but neither programming languages
nor program transformations are easily formalised.

When arguing about behaviour-preservation of program refactoring, we argue
about program semantics. To be able to do this in a precise manner, we need a
formal, mathematical definition of the semantics in question, on which to base
formal verification. Unfortunately, most programming languages lack fully formal
definitions, which makes it challenging to deal with them in formal ways.

Erlang, similarly to its younger siblings like Elixir and LFE, is having its re-
naissance in implementing instant messaging, e-commerce and fintech. Extensive
code bases therefore need to be developed and maintained in these languages,
which in turn requires refactoring support. Our work aims to improve trust-
worthiness of Erlang refactorings via formal verification, and in particular we
formalise Core Erlang, which is not only a subset of Erlang, but also the target
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for translation of Erlang and Elixir in the compiler front-end. The formalisation
of Core Erlang can also be seen as a stepping stone toward a definition for the
entire Erlang language.

This paper presents the Coq [19] formalisation of a big-step semantics for a
subset of sequential Core Erlang. In building this we rely not only on the language
specification and the reference implementation, but also on some earlier work on
semantics. Using this we made a definition of a semantics that can be properly
embedded in Coq, and, on the basis of this, we also proved some basic properties
of the semantics and some simple program equivalences. The main contributions
of this paper are:

1. The definition of a formal semantics for a sequential subset of Erlang (Core
Erlang), based partly on existing formalisations.

2. An implementation for this semantics in the Coq Proof Assistant.
3. Theorems that formalise a number of properties of this formalisation, e.g.

determinism, with their machine-checked proofs.
4. Results on program evaluation and equivalence verification using the seman-

tics definition, all formalised in Coq.

The rest of the paper is structured as follows. In Section 2 we review the existing
formalisations of Core Erlang and Erlang, and compare them in order to help
understand the construction of our formal semantics. In Section 3 we describe
the proposed formal description, including abstractions, syntax, and semantics,
while in Section 4 we describe a number of applications of the semantics. Section
5 discusses future work and concludes.

2 Related work

Although there have already been a number of attempts to build a fully-featured
formal definition of the Erlang programming language, the existing definitions
show varying language coverage, and only some of them, covering mostly the
concurrent part of Core Erlang or Erlang, are implemented in a machine-checked
proof system. This alone would provide a solid motivation for the work presented
in this paper, but our ultimate goal is to prove refactoring-related theorems, such
as program equivalences, in the Coq Proof Assistant, based on this semantics.

We have reviewed the extensive related work on formalisations of both Er-
lang [6, 7, 9, 18] and Core Erlang [5, 8, 11–13, 15, 16], incorporating ideas from
these sources as appropriate.

The vast majority of related work on Erlang formalisations presents small-
step operational semantics. In particular, one of our former project members
has already defined most elements of sequential Erlang in the K specification
language [9]. We could reformalise this small-step semantics in Coq, but for the
proofs to be carried out in the proof assistant, it is too fine-grained. As Owens
and others point out, (functional) big-step semantics is a good compromise in
terms of amount of detail and ease of use [17]; furthermore, our definition of
equivalence does not rely on intermediate execution steps. Thus, our current
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approach is to define an inductive relational big-step semantics for the language,
and down the road we may derive its computable function.

Most papers addressing the formal definition of Erlang focus on the concur-
rent part of the language, including process management and communication
primitives, which is not relevant to our current formalisation goals. Harrison’s
formalisation of CoErl [8] concentrates on how communication works, and in
particular how mailboxes are processed.

Although the papers dealing with the sequential parts tend to present differ-
ent approaches to defining the semantics, the elements of the language covered
and the syntax used to describe them are very similar; there are, however, some
minor differences. Some definitions model the language very closely, whilst oth-
ers abstract away particular aspects; for instance, unlike the work of Neuhäußer
et. al. [15], the semantics of Lanese et. al. [11] describes function applications
only for named functions. There is another notable difference in the existing
formalisations from the syntactic point of view: some define values as a subclass
of expressions by representing them as a distinct syntactic category [6,7,15,18],
while others define values as “ground patterns” [11–13, 16], that is as a subset
of patterns. Both approaches have their advantages and disadvantages, and we
discuss this question in more detail in Section 3.

We principally used the work by Lanese et al. on defining reversible se-
mantics for Erlang [11–13, 16], by defining a language “basically equivalent to
a subset of Core Erlang” [16]. Although they do not take Core Erlang functions
and their closures into consideration (except for top-level functions), which we
needed to define from scratch, their work proved to be a good starting point for
defining a big-step operational semantics. In addition, we took the Core Erlang
language specification [4] and the Erlang/OTP compiler for Core Erlang as ref-
erence points for understanding the basic abstractions of the language in more
detail. When defining function applications, we took some ideas from a paper
embedding Core Erlang into Prolog [5], and when tackling match expressions,
the big-step semantics for FMON [3] proved to be useful. Fredlund’s fundamen-
tal work [6] was very influential, but his treatment of Erlang formal semantics
mainly discusses concurrency.

There were some abstractions missing in almost all papers (e.g. the let bind-
ing with multiple variables, letrec, map expressions), for which we had to rely
on the informal definitions described in the language specification [4] and the
Erlang/OTP compiler. Also, in most of the papers, the global environment is
modified at step of the execution; in contrast, our semantics is less fine-grained as
side-effects have not been implemented yet. Unfortunately, the official language
specification document was written in 2004, and there were some new features
(e.g. the map data type) introduced to Core Erlang since then. These features
do not have an informal description either; however, we took the Erlang/OTP
compiler as the reference implementation and build the formalisation on that.

There is a considerable body of work on formalisations of other sequential
languages, both functional, as is the case of CakeML [10], and imperative, as
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in CompCert [14], and indeed the trend to formalising programming language
metatheory has been systematised in the POPLmark challenge [2].

3 Formal semantics of Core Erlang

Here we present our formal definition of Core Erlang formalised in Coq. Through-
out this section, we will frequently quote the Coq definition; in some cases, we use
the Coq syntax and quote literally, but in case of the semantic rules, we turned
the consecutive implications into inference rule notation for better readability.
The Coq formalisation is available on Github [1].

3.1 Syntax

This section gives a brief overview of the syntax in our formalisation.

Inductive Literal : Type :=
| Atom (s: string)
| Integer (x : Z )
| EmptyList
| EmptyTuple
| EmptyMap.

Fig. 1. Syntax of literals

Inductive Pattern : Type :=
| PVar (v : Var)
| PLiteral (l : Literal)
| PList (hd tl : Pattern)
| PTuple (t : list Tuple)

Fig. 2. Syntax of patterns

The syntax of literals and patterns (Figures 1 and 2) is based on the papers
mentioned in Section 2.

For the definition of the syntax of expressions, we need an auxiliary type,
which represents function identifiers. In Core Erlang these are pairs of function
names and arities (number of arguments). Note that the language allows the
overloading of function names as long as it is done with different arities.

Definition FunctionIdentifier : Type := string× nat.

With the help of this type alias and the previous definitions, we can describe
the syntax of expressions (Figure 3).

As it can be seen, we only include atoms and integers as base type literals
in the formalisation. These are representatives of built in data types in the
language, and other types (such as floats and binaries) can be added in the
future. As mentioned in Section 2, our expression syntax is very similar to the
existing definitions found in the related work. The main abstractions are based
on Fredlund and Vidal’s work [6, 7, 18] and the additional expressions (e.g. let,
letrec, apply, call) on the Core Erlang specification [4] as well as work by
Lanese, Neuhäußer, Nishida and their co-authors [11–13,15,16].

Moreover, in our formalisation, we included the map type, primitive opera-
tions and function calls are handled alike, and in addition, the ELet and ELetrec
statements handle multiple simultaneous bindings.



A Proof Assistant Based Formalisation of a Subset of Sequential Core Erlang 5

Inductive Expression : Type :=
| ELiteral (l : Literal)
| EVar (v : Var)
| EFunSig (f : FunctionIdentifier)
| EFun (vl : list Var) (e : Expression)
| EList (hd tl : Expression)
| ETuple (l : list Expression)
| ECall (f : string) (l : list Expression)
| EApply (exp: Expression) (l : list Expression)
| ECase (e : Expression) (l : list Clause)
| ELet (s : list Var) (el : list Expression) (e : Expression)
| ELetrec (fnames : list FunctionIdentifier) (fsa : list ((list Var) × Expression)) (e :
Expression)
| EMap (kl vl : list Expression)
with Clause : Type :=
| CCons (p : Pattern) (guard e : Expression).

a This is the list of the defined functions (list of variable lists and body expressions)

Fig. 3. Syntax of expressions

Values In Core Erlang, literals, lists, tuples, maps, and closures can be val-
ues, i.e. results of the evaluation of other expressions. We define values as a
separate syntactic category and also include function closures in the definition.
Values should be seen as a semantic domain, to which expressions are evaluated
(see Figure 4). This distinction of values allows the semantics to be defined as a
big-step relation with a codomain of semantic objects. This approach creates du-
plication in the syntax, since expression syntax is not reused, but it substantially
simplifies building proofs of theorems about values.

Inductive Value : Type :=
| VLiteral (l : Literal)
| VClosurea (ref : Environment + FunctionIdentifier) (vl : list Var) (e : Expression)
| VList (vhd vtl : Value)
| VTuple (vl : list Value)
| VMap (kl vl : list Value).

a A closure represents a function definition together with an environment representing
the context in which the function was defined: ref will be the environment or a ref-
erence to it, vl will be the function parameter list and e will be the body expression.
Environment is defined in Section 3.2 below.

Fig. 4. Syntax of values

In the upcoming sections, we will use the following syntax abbreviations:
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tt := VLiteral (Atom “true”)
ff := VLiteral (Atom “false”)

We now discuss why we this particular approach. As noted in Section 2, other
approaches are possible: either they are related to patterns (in the work of Lanese
et. al. [11–13, 16]) or to expressions, as in the Erlang formalisations and in the
work of Neuhäußer et. al. [6, 7, 15, 18]. Moreover, there are two main approach
to define the aforementioned relation of values and expressions or patterns:

– Values are not a distinct syntactic category, so they are defined with an
explicit subset relation;

– Values are syntactically distinct, and there is no explicit subset relation
between values and expressions or patterns [6, 7, 15,18].

When values are not defined as a distinct syntactic set (or as a semantic
domain), a subset relation has to be defined that tells whether an expression
represents a value. In Coq, this subset relation is defined by a judgment on ex-
pressions, but this would require a proof every time an expression is handled as a
value: the elements of a subset are defined by a pair, i.e. the expression itself and
a proof that the expression is a value. While this is a feasible approach, it gen-
erates lots of unnecessary trivial statements to prove in the dynamic semantics:
instead of using a list of values, a list of expressions has to be used, for which
proofs must be given about the head and tail being values (see the example in
Section 3.2 for more details about list evaluation). In addition, the main issue
with these approaches is that values do not always form a proper subset of ei-
ther patterns or expressions [4]: when lambda functions and function identifiers
(signatures) are considered, values must include closures (i.e. the normal form
of function expressions), which are not included in the expression syntax.

We chose to relate values to expressions, because semantically expressions
are evaluated to values and not patterns. In particular, we reused the constructs
in the expression syntax in our value definition, and we also included closures,
rather than functions as in the work of Neuhäußer et. al. [15].

3.2 Semantics

We define a big-step operational semantics for the Core Erlang syntax described
in the previous section. In order to do so, we need to define environment types to
be included in the evaluation configuration. In particular, we define environments
which hold values of variable symbols and function identifiers, and separately we
define closure environments to store closure-local context.

Environment The variable environment stores the bindings made with pattern
matching in parameter passing as well as in let, letrec, case (and try) expres-
sions. Note that the bindings may include both variable names and function
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identifiers, with the latter being associated with function expressions in nor-
mal form (closures). In addition, there are top-level functions in the language,
and they too are stored in this environment, similarly to those defined with the
letrec statement.

Top-level, global definitions could be stored in a separate environment in a
separate configuration cell, but we decided to handle all bindings in one environ-
ment, because this separation would cause a lot of duplication in the semantic
rules and in the actual Coq implementation. Therefore, there is one union type to
construct a single environment for function identifiers and variables, both local
and global. It is worth mentioning that in our case the environment always stores
values since Core Erlang evaluation is strict, i.e. an expression first evaluates to
some value, then a variable can be bound to this value.

We define the environment in the following way:

Definition Environment : Type := list ((Var+ FunctionIdentifier)×Value).

We denote this mapping by Γ in what follows, whilst ∅ is used to denote
the empty environment. We also define a number of helper functions to manage
environments, which will be used in formal proofs below. For the sake of simplic-
ity, we omit the actual Coq definitions of these operations and rather provide a
short summary of their effect.

– get value Γ key : Returns the value associated with key in Γ . In the following
sections it will be denoted by Γ (key).

– insert value Γ key value: Inserts the (key,value) pair into Γ . If this key
is already included, it will replace the original binding with the new one
(according to the Core Erlang specification [4], section 6). The next three
function is implemented with this replacing insertion.

– add bindings bindings Γ : Appends to Γ the variable-value pairs given in
bindings.

– append vars to env varlist valuelist Γ : It is used for let statements and
adds the bindings (variables in varlist to values in valuelist) to Γ .

– append funs to env funsiglist param-bodylist Γ : Appends function identifier-
closure pairs to Γ . These closure values are assembled from param-bodylist
which contains the parameter lists and body expressions.

Closure Environment In Core Erlang, function expressions evaluate to clo-
sures. Closures have to be modeled in the semantics carefully in order to capture
the bindings in the context of the closure properly. The following Core Erlang
program shows an example where we need to explicitly store a binding context
to closures:

let X = 42 in
let Y = fun() -> X in
let X = 5 in
apply Y()
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The semantics needs to make sure that we apply static binding here: the
function Y has to return 42 rather than 5. This requires the Y ’s context to
be stored along with its body, which is done by coupling them into a function
closure.

When evaluating a function expression a closure is created. This value is
a copy of the current environment, an expression (the function body), and a
variable list (the parameters of the function). The mentioned environment could
be encoded with the VClosure constructor in the Value inductive type using
the actual environment (see Figure 4), however, this cannot be used when the
function is recursive. Here is an example:

letrec ’x’/0 = fun() -> apply ’x’/0() in apply ’x’/0()

In Core Erlang, letrec allows definition of recursive functions, so the body of
the ′x′/0 must be evaluated in an environment which stores ′x′/0 mapped to a
closure. But this closure contains the environment in which the body expression
must be evaluated and that is the same environment we are trying to define. So
the this is a recursively defined structure in embedded closures in the environ-
ment where the recursion has no base case. Here is the problem visualized (we
denote apply ′x′/0() with body):

{′x′/0 : VClosure {′x′/0 : VClosure {′x′/0 : ...} [] body} [] body}

In Coq such constructs or functions cannot be computed without using a
clock or fuel [17] which ensures termination. Instead of this we can use the step-
by-step unfolding of the environment. This means that, while using the big-step
semantics, the environment of the next proving step will be constructed by the
current step.

We could use a simple additional attribute in the closure values which marks
that the closure is recursive, then it is enough to store the non-recursive part of
the environment in the closure. However, if multiple functions are defined at a
time and they can potentially apply one another, they do not store information
(parameter lists and body expressions) about the other functions. Therefore, we
need another approach.

We do not make any syntactic changes to the function body, but we solve
this issue by introducing the concept of closure environments. The idea is that
the name of the function (variable name or function identifier) is mapped to the
application environment (this way, it can be used as a reference). It is enough
to encode the function’s name with the VClosure constructor. This closure en-
vironment can only be used together with the use of the environment and items
cannot be deleted from it.

Definition Closures : Type := list (FunctionIdentifier× Environment).

All in all, closures will ensure that the functions will be evaluated in the right
environments. We also describe the formal evaluation proofs of the examples
above in Section 4.2. There are two ways of using their evaluation environment
(ref attribute of Environment + FunctionIdentifier type):
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– Either using the concrete environment from the closure value directly if ref
is from the type Environment ;

– Or using the reference and the closure environment to get the evaluation
environment when the type of ref is FunctionIdentifier.

In the next sections, we denote this function-environment mapping with ∆,
and ∅ denotes the empty closure environment. Similarly to ordinary environ-
ments, closure environments are managed with a number of simple helper func-
tions; like before, we omit the formal definition of these and provide an informa-
tive summary instead.

– get env key ∆ : Returns the environment associated with key in ∆ if key is
a FunctionIdentifier. If key is an Environment, the function simply returns
it. This function is implemented with the help of the next function.

– get env from closure key ∆: Returns the environment associated with key.
If the key is not present in the ∆, it returns ∅.

– set closure ∆ key Γ : Adds (key, Γ ) pair to ∆. If key exists in ∆, its value
will be replaced. Used in the next function.

– append funs to closure fnames ∆ Γ : Inserts a (funidi, Γ ) binding into ∆
for every funidi function identifier in fnames.

Dynamic Semantics The presented semantics, theorems, tests and proofs are
available in Coq on the project’s Github repository [1].

With the language syntax and the execution environment defined, we are
ready to define a big-step semantics for Core Erlang. The operational semantics
is denoted by

|Γ,∆, e| e−→ v ::= eval expr Γ ∆ e v

where eval expr is the semantic relation in Figure 5. This means that e Ex-
pression evaluates to v Value in the environment Γ and closure environment ∆.
We reused length, combine, nth and In from Coq’s built-ins [19] in the following
definitions.

Prior to presenting the rules of the operational semantics, we define a helper
for pointwise evaluation of multiple independent expressions: eval all states that
a list of expressions evaluates to a list of values.

eval all Γ ∆ exps vals :=
length exps = length vals =⇒
(∀ (exp : Expression), (val : Value),
In (exp, val) (combine exps vals) =⇒

|Γ,∆, exp| e−→ val)

With the help of this proposition, we will be able to define the semantics of
function calls, tuples, and expressions of other kinds in a more readable way.

There are two other auxiliary definition which will simplify the main defini-
tion:
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– match clause (v : Value) (cs : list Clause) (i : nat) tries to match the ith
pattern given in the list of clauses (cs) with the value v. The result is optional;
if the ith clause does not match the value, it returns Coq’s built-in None
value while the matching has been successful, it returns the guard and body
expressions with the pattern variable-value bindings from the ith clause.

– The no previous match property states that the clause selection cannot be
successful up to the ith clause:

no previous match i ∆ Γ cs v :=
∀j : nat, j < i =⇒ (∀ (gg, ee : Expression), (bb : list (Var×Value)),
match clause v cs j = Some (gg, ee, bb) =⇒

(|add bindings bb Γ,∆, gg | e−→ ff))

The formal definition of the proposed operational semantics for Core Erlang
is presented in Figure 5. This figure presents the actual Coq definition, but
the inductive cases are formatted as inference rules. In the next paragraphs, we
provide short explanations of the less trivial rules.

– Rule 3.7: At first, the case expression e must be evaluated to some v value.
Then this v must match to the pattern (match clause function) of the spec-
ified ith clause. This match provides the guard, the body expressions of the
clause and also the pattern variable binding list. The guard must be evalu-
ated to tt in the extended environment with the result of the pattern match-
ing (the binding list mentioned before). The no previous match states, that
for every clause before the ith one the pattern matching cannot succeed or
the guard expression evaluates in the extended environment to ff. Thereafter
the evaluation of the body expression can continue in the abovementioned
extended environment.

– Rule 3.8: At first, the parameters must be evaluated to values. Then these
values are passed to the auxiliary eval function which simulates the be-
haviour of inter-module function calls (e.g. the addition inter-module call is
represented in Coq with the addition of numbers). This results in a value
which will be the result of the ECall evaluation.

– Rule 3.9: This rule works in similar way that given by de Angelis and co-
authors in [5] with the addition of closures. To use this rule, first exp has to
be evaluated to a closure. Moreover, every parameter must be evaluated to a
value. Finally, the closure’s body expression evaluates to the result in an ex-
tended environment which is constructed from the parameter variable-value
bindings and the evaluation environment of the closure. This environment
can be acquired from the closure environment indirectly or it is present in
the closure value itself (Section 3.2).

– Rule 3.10: At first, every expression given must be evaluated to a value. Then
the body of the let expression must be evaluated in the original environment
extended with the variable-value bindings.

– Rule 3.11: From the functions described (a list of variable list and body
expressions), closures will be created and appended to the environment and
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Inductive eval expr : Environment → Closures → Expression → Value → Prop :=

|Γ,∆,ELiteral l | e−→ VLiteral l (3.1) |Γ,∆,EFunSig fsig| e−→ Γ (inr fsig) (3.2)

|Γ,∆,EVar s| e−→ Γ (inl s) (3.3) |Γ,∆,EFun vl e| e−→ VClosure (inl Γ ) vl e (3.4)

eval all Γ ∆ exps vals

|Γ,∆,ETuple exps| e−→ VTuple vals
(3.5)

|Γ,∆, hd| e−→ hdv |Γ,∆, tl| e−→ tlv

|Γ,∆,EList hd tl| e−→ VList hdv tlv
(3.6)

match clause v cs i = Some (guard, exp, bindings)
|add bindings bindings Γ,∆, guard| e−→ tt
|add bindings bindings Γ,∆, exp| e−→ v’

|Γ,∆, e| e−→ v
no previous match i ∆ Γ cs v

|Γ,∆,ECase e cs| e−→ v’

(3.7)

eval all Γ ∆ params vals eval fname vals = v

|Γ,∆,ECall fname params| e−→ v
(3.8)

eval all Γ ∆ params vals |Γ,∆, exp| e−→ VClosure ref var list body
|append vars to env var list vals (get env ref ∆),∆, body| e−→ v

|Γ,∆,EApply exp params| e−→ v

(3.9)

eval all Γ ∆ exps vals |append vars to env vars vals Γ,∆, e| e−→ v

|Γ,∆,ELet vars exps e| e−→ v
(3.10)

For the following rule we introduce Γ ′ ::= append funs to env fnames funs Γ

length funs = length fnames
|Γ ′, append funs to closure fnames ∆ Γ ′, e| e−→ v

|Γ,∆,ELetrec fnames funs e| e−→ v

(3.11)

eval all Γ ∆ kl kvals eval all Γ ∆ vl vvals length kl = length vl

|Γ,∆,EMap kl vl| e−→ VMap kvals vvals
(3.12)

Fig. 5. The big-step operational semantics of Core Erlang

closure environment associated with the given function identifiers (fnames).
In these modified contexts the evaluation continues.

– Rule 3.12: Introduces the evaluation for maps. This rule states that every
key in the map’s key list and value list must be evaluated to values resulting
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in two lists of values (for the map keys and their associated values) from
which the value map is constructed3.

We also note that this big-step definition has been partly based on the small-
step definition introduced by Lanese [11, 13], Nishida [16], and Neuhasser [15]
and in some aspects on the big-step semantics in Focaltest [3] and de Angelis’
symbolic evaluation [5]. In addition, for most of the language elements discussed,
an informal definition is available in the language specification [4].

After discussing these rules, we show an example where the approach in which
values are defined as a subset of expressions is more difficult to work with. Let
us consider a unary operator (val) on expressions which marks the values of the
expressions. With the help of this operator, the type of values can be defined:

Value ::= {e : Expression | e val}.

Let us consider the key ways in which this would modify our semantics.

– Environment → Closures → Expression → Expression → Prop would be the
type of eval expr. This way we need an additional proposition which states
that values are expressions in normal form, i.e. they cannot be used on the
left side of the rewriting rules.

– The expressions which are in normal form could not be rewritten.
– Function definitions have to be handled as values
– Because of the strictness of Core Erlang, the derivation rules change, addi-

tional checks are needed in the preconditions, e.g. in the Rule 3.6:

tlv val
hdv val

|Γ,∆, hd| e−→ hdv ∨ hd = hdv
|Γ,∆, tl| e−→ tlv ∨ tl = tlv

|Γ,∆,EList hd tl| e−→ EList hdv tlv

This approach has the same expressive power as the presented one, but it
has more preconditions to prove while using it. For reason, argue that our for-
malisation is easier to use.

Proofs of properties of the semantics We have formalised and proved theo-
rems about the attributes of the operations, auxiliary functions and the seman-
tics. We present two examples here, together with sketches of their proofs.

Theorem 1 (Determinism).
∀ (Γ : Environment), (∆ : Closures), (e : Expression), (v1 : Value),
|Γ,∆, e| e−→ v1 =⇒ (∀v2 : Value, |Γ,∆, e| e−→ v2 =⇒ v1 = v2).

Proof. Induction by the construction of the semantics.
3 In the future, this evaluation has to be modified, because the normal form of maps
cannot contain duplicate keys, moreover it is ordered based on these keys.
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– Rules 3.1, 3.3, 3.2 and 3.4 are trivial: e.g. a value literal can only be derivated
from its expression counterpart.

– Rules 3.5 and 3.12 are similar, a map is basically a double tuple in the
current semantics. According to the induction hypothesis each element in
the expression tuple can be evaluated to a single value, so the tuple itself
evaluates to the tuple which contains these values. The proof for maps is
similar.

– Rule 3.6 The head and the tail expression of the list can be evaluated to a
single head and tail value according to the induction hypotheses. So the list
constructed from the head and tail expressions can only be evaluated to the
value list constructed from the head and tail values.

– Rule 3.7 The induction hypothesis states that the base and the clause body
and guard expressions evaluate deterministically. The clause selector func-
tions are also deterministic, so there is only one possible way to select a body
expression to evaluate.

– The other cases are similar to those presented above.
ut

Theorem 2 (Commutativity). ∀ (v, v’ : Value),
eval “plus” [v; v’ ] = eval “plus” [v’; v ].

Proof. First we separate cases based on the all possible construction of values (5
constructors, v and v’ values, that is 25 cases). In every case where either of the
values is not an integer literal, the eval function results in the same error value
(in this version we can not distinguish errors) on both side of the equality.

One case is remaining, when both v and v’ are integer literals. In this case
the definition of eval is the addition of these numbers, and the commutativity
of this addition has already been proven in the Coq standard library [19]. ut

It is important to note that if exceptions are included in the formalisation,
then this theorem probably would not be correct as it stands, and would need
to be adjusted.

4 Application and testing the semantics

In this section we present some use cases. First, we elaborate on the verification
of the semantics definition by testing it against the Erlang/OTP compiler, then
we show some examples on how we used the formalisation for deriving program
behaviour and for proving program equivalence.

4.1 Testing the semantics

Due to a lack of an up-to-date language specification, we validated the correct-
ness of our semantics definition by comparing it to the behaviour of the code
emitted by the Erlang/OTP compiler.
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To test our formal semantics, we first used equivalence partitioning. We have
written tests both in Coq (v 8.11.0) and in Core Erlang (OTP 22.0) for every
type of expression defined in our formalisation (i.e. for every possible inference
rule application). There are also some special complex expressions that require
separate test cases (e.g. using bound variables in let expressions, application of
recursive functions, returned functions etc.). In the future, we plan to automate
the evaluation of both Coq and Core Erlang code and comparison of the results.

Apart from the formal expression evaluation examples, the proofs about the
properties of the semantics (e.g. determinism) and the expression equivalences
also provided an additional layer of assurance about complying to the behaviour
of the Erlang/OTP compiler.

4.2 Formal expression evaluation

Here we demonstrate how Core Erlang expressions are evaluated in the formal
semantics. For readability, we use concrete Core Erlang syntax in the proofs,
and trivial statements (e.g. the use of Rule 3.9) are omitted from the proof tree.
The first example shows how to evaluate a simple expression with binding:

{X : 5}(X) = 5
3.3

|{X : 5},∅, X| e−→ 5
3.10

|∅,∅, let X = 5 in X| e−→ 5

The next example is the first one mentioned in Section 3.2 and intends to
demonstrate the purpose of the closure values. Here at the application of 3.9 it
is shown that the body of the application is evaluated in the environment given
by the closure. For readability, we denote the inner let X = 5 in apply Y ()
expression with exp.

{X : 42}(X) = 42
3.3

|{X : 42},∅, X| e−→ 42
3.9

|{X : 5, Y : VClosure (inl {X : 42}) [] X},∅, apply Y ()| e−→ 42
3.10

|{X : 42, Y : VClosure (inl {X : 42}) [] X},∅, exp| e−→ 42
3.10

|{X : 42},∅, let Y = fun()→ X in exp| e−→ 42
3.10

|∅,∅, let X = 42 in let Y = fun()→ X in exp| e−→ 42

Next we show the previous example, but now using a recursive function
between the two let expressions in order to demonstrate the use of the closure
environment. For readability we denote VClosure (inr ′f ′/0) [] X with clos and
the inner let X = 5 in apply ′f ′/0() with exp, just like before.
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{X : 42, ′f ′/0 : clos}(X) = 42
3.3

|{X : 42, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}}, X| e−→ 42
3.9

|{X : 5, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}}, apply Y ()| e−→ 42
3.10

|{X : 42, ′f ′/0 : clos}, {′f ′/0 : {X : 42, ′f ′/0 : clos}}, exp| e−→ 42
3.11

|{X : 42},∅, letrec ′f ′/0 = fun()→ X in exp| e−→ 42
3.10

|∅,∅, let X = 42 in letrec ′f ′/0 = fun()→ X in exp| e−→ 42

At the point of the use of Rule 3.11 we save in the closure environment the
current local environment extended with the closure value of the function bound
to this function’s identifier. This way, later in the evaluation, this environment
can be used (e.g. when using Rule 3.3).

The last example is the second one mentioned in Section 3.2 and cannot be
evaluated in our formalisation, because of divergence. For readability we intro-
duce Γ := {′x′/0 : VClosure (inr ′x′/0) [] (apply ′x′/0())} (the environment after
the binding is added).

... 3.9
|Γ, {′x′/0 : Γ}, apply ′x′/0()| e−→ ??

3.9
|Γ, {′x′/0 : Γ}, apply ′x′/0()| e−→ ??

3.11
|∅,∅, letrec ′x′/0 = fun()→ apply ′x′/0() in apply ′x′/0()| e−→ ??

4.3 Expression equivalence proofs

Last but not least, let us present some expression equivalence proofs demon-
strating the usability of this semantics definition implemented in Coq. This is a
significant result of the paper since our ultimate goal with the formalisation is
to prove refactorings correct.

For the simplicity, we use + to refer to the append vars to env function and
also for the addition inter-module call (i.e. e1 + e2 will denote the expression
ECall “plus” [e1, e2] in the following proofs) both in proofs and quoted code.

First, we present a rather simple example of expression equivalence.

Example 1 (Swapping variable values).

let X = 5 in let Y = 6 in X + Y

is equivalent to

let X = 6 in let Y = 5 in X + Y

Proof. This example can be proved by specialising Example 2 with concrete
values. ut
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Also a more abstract local refactoring also can be proved correct in our
system.

Example 2 (Swapping variable expressions). If we make the following assump-
tions:

|Γ,∆, e1|
e−→ v1 |Γ + {A : v2}, ∆, e1|

e−→ v1

|Γ,∆, e2|
e−→ v2 |Γ + {A : v1}, ∆, e2|

e−→ v2

A 6= B

then

let A = e1 in let B = e2 in A + B

is equivalent to

let A = e2 in let B = e1 in A + B

Proof. First, we present the problem formalised.

∀ (Γ : Environment), (∆ : Closures), (t : Value), (A,B : Var)

|Γ,∆, e1|
e−→ v1 =⇒ |Γ + {A : v2}, ∆, e1|

e−→ v1 =⇒

|Γ,∆, e2|
e−→ v2 =⇒ |Γ + {A : v1}, ∆, e2|

e−→ v2 =⇒ A 6= B =⇒
|Γ,∆,ELet [A] [e1] (ELet [B] [e2]

(ECall “plus” [EVar A;EVar B]))| e−→ t⇐⇒
|Γ,∆,ELet [A] [e2] (ELet [B] [e1]

(ECall “plus” [EVar A;EVar B]))| e−→ t

The two directions of this equivalence are proved in exactly the same way,
so only the forward (=⇒) direction is presented here.

Now the main hypothesis has two let statements in itself. These statements
could have only been evaluated with Rule 3.10, i.e. there are two values (v1
and v2 because of the determinism and the assumptions) to which e1 and e2
evaluates:

|Γ,∆, e1|
e−→ v1 and |Γ + {A : v1}, ∆, e2|

e−→ v2

It is important to note, that during the evaluation of the inner let, A has already
been bound to v1. Moreover a new hypothesis also appeared:

|Γ + {A : v1, B : v2}, ∆,A+B| e−→ t

This hypothesis implies that t = eval “plus” [v1, v2] because of the evaluation
with Rule 3.8 and 3.3, also when we add variables to the environment, the
existing binding will be replaced.

Now, the goal can be solved with the construction of a derivation tree. We
denote Γ + {A : v2, B : v1} with Γv.
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|Γ,∆, e2|
e−→ v2

|Γv, ∆,A+B| e−→ t |Γ + {A : v2}, ∆, e1|
e−→ v1

3.10
|Γ + {A : v2}, ∆, let B = e1 in A+B| e−→ t

3.10
|Γ,∆, let A = e2 in let B = e1 in A+B| e−→ t

Now for the addition, the following derivation tree can be used.

Γv(B) = v1
3.3

|Γv, ∆,B|
e−→ v1

Γv(A) = v2
3.3

|Γv, ∆,A|
e−→ v2 eval “plus” [v2, v1] = t

3.8
|Γv, ∆,A+B| e−→ t

According to our assumptions, e1 and e2 evaluates to v1 and v2 in the initial
environment Γ and also in the extended environments (for e1 : Γ + {A : v2}, for
e2 : Γ + {A : v1}) too. So when the Rule 3.10 applies, we can give a proof that
e2 and e1 evaluates to v2 and v1.

After making this statement, we can use the Rule 3.8 to evaluate the addition.
The parameter variables will evaluate to v2 and v1 because of the replacing
insertion mentioned before. With this knowledge, we get: eval “plus” [v2, v1] = t.
As mentioned before t = eval “plus” [v1, v2]. So it is sufficient to prove, that:

eval “plus” [v2, v1] = eval “plus” [v1, v2]

The commutativity of eval (Theorem 2) can be used to solve this equality. ut

Is it possible to replace the assumptions of Example 2 with statements about
e1 and e2 not containing the variables A and B? Not directly; it it would require a
theorem stating the evaluation of an expression that does not contain the variable
A does not change in the extended environment which contains a binding of the
variable A. This statement is not true for closure values, because they potentially
save their evaluation environment which would differ in this case.

Now, we prove a similar simple local refactoring (this example is also gener-
alised over the A, B variables).

Example 3 (Swapping variables in simultaneous let). If we assume that A 6= B
then

let <A, B> = <e1, e2> in A + B

is equivalent to

let <A, B> = <e2, e1> in A + B

Proof. The proof for this example is very similar to the proof for Example 2.
The only difference is that one step is enough to evaluate the let expression.
Inside it both e1 and e2 expressions evaluate in the same environment and that
is the reason why no assumptions are needed. ut
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Finally, we show another simple local refactoring about moving an expression to
a function.

Example 4 (Moving an expression to a function).

e

is equivalent to

let A = fun() -> e in
apply A()

Proof. In this case, both directions should be proved. At first, we formalise the
problem:

∀ (Γ : Environment), (∆ : Closures), (t : Value), (A : Var)

|Γ,∆, e| e−→ t⇐⇒

|Γ,∆,ELet [A] [EFun [] e] (EApply (EV ar A) []| e−→ t

=⇒ direction:
This can be proved by the construction of a derivation tree. We denote Γ +

{A : VClosure (inl Γ ) [] e} with ΓA and the value VClosure (inl Γ ) [] e with cl
in the tree.

3.4
|Γ,∆, fun()→ e| e−→ cl

3.3
|ΓA, ∆,A|

e−→ cl
Hypo.

|Γ,∆, e| e−→ t
3.9

|ΓA, ∆, apply A()|
e−→ t

3.10
|Γ,∆, let A = fun()→ e in apply A()| e−→ t

⇐= direction:
This can be proved by the deconstruction of the hypothesis for the let ex-

pression. First only the 3.10 could have been used for the evaluation. This means
that the function evaluates to some value, i.e. to the closure VClosure (inl Γ ) [] e,
because of Rule 3.4. We get a new hypothesis:

|Γ + {A : VClosure (inl Γ ) [] e}, ∆, apply A()| e−→ t

Then the evaluation continued with the application of Rule 3.9. This means,
that the A variable evaluates to the abovementioned closure (because Rule 3.3
and the replacing insertion into the environment) and the body of this closure
evaluates to t in the closure’s stored environment extended with the parameter-
value bindings (in this case there is none). This means we get the following
hypothesis: |Γ,∆, e| e−→ t which is exactly what we want to prove. ut

To prove these examples in Coq, a significant number of lemmas were needed,
such as the expansion of lists, the commutativity of eval, and so forth. However,
the proofs mostly consist of the combination of hypotheses similar to the proofs in
this paper. Although sometimes additional case analyses were needed, resulting
in lots of sub-goals, these were solved similarly. In the future, these proofs should
be simplified with the introduction of smart tactics and additional lemmas.
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5 Future work and conclusion

Using Coq we have formalised a substantial subset of (Core) Erlang together with
its semantics, and proved results on the formalisation itself as well as establishing
a number of program equivalences in that semantics. Use of this formalisation is
demanding in practice, partly because the Coq Proof Assistant makes its users
write down proofs explicitly step by step. Of course this is a necessity of the
correctness, however, this property results in lengthy proofs. This work is a first
step in our project to establish a platform on which we can build and prove
correct a range of refactorings for an existing programming language: Erlang

There are several ways to enhance our formalisation. We intend to focus
first on extending the semantics with additional expressions (e.g. binaries); for-
malising exceptions and exception handling, so that we can distinguish between
different errors and also divergence; and handling and logging side-effects. To
improve the formalisation we will create new lemmas, theorems and tactics to
shorten the Coq implementation of the proofs; formalise and prove more refactor-
ing strategies; and move to automate the testing process, running and comparing
the results of the Core Erlang code and the theorems automatically.

Our longer-term goals include extending the work to Erlang (semantics and
syntax), including concurrency, and distinguishing primitive operations and inter-
module calls. The ultimate goal of the project is to change the core of a scheme-
based refactoring system to a formally verified core.
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