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Abstract. Reversible computing allows one to run programs not only in
the usual forward direction, but also backward. A main application area
for reversible computing is debugging, where one can use reversibility
to go backward from a visible misbehaviour towards the bug causing
it. While reversible debugging of sequential systems is well understood,
reversible debugging of concurrent and distributed systems is less settled.
We present here two approaches for debugging concurrent programs, one
based on backtracking, which undoes actions in reverse order of execution,
and one based on causal consistency, which allows one to undo any action
provided that its consequences, if any, are undone beforehand. The first
approach tackles an imperative language with shared memory, while the
second one considers a core of the functional message-passing language
Erlang. Both the approaches are based on solid formal foundations.

1 Introduction

Reversible computing has been attracting interest due to its applications in fields
as different as, e.g., hardware design [12], computational biology [4], quantum
computing [2], discrete simulation [6] and robotics [31].

One of the oldest and more explored application areas for reversible comput-
ing is program debugging. This can be explained by looking, on the one hand, to
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the relevance of the problem, and, on the other hand, to how naturally reversible
computing fits in the picture. Concerning the former, finding and fixing bugs
inside software has always been a main activity in the software development life
cycle. Indeed, according to a 2014 study [47], the cost of debugging amounts to
$312 billions annually. Another recent study [3] estimates that the time spent in
debugging is 49.9% of the total programming time. Concerning how naturally
reversible computing fits in this context, consider that debugging means finding
a bug, i.e., some wrong line of code, causing some visible misbehaviour, i.e., a
wrong effect of a program, such as a wrong message printed on the screen. In
general, the execution of the wrong line precedes the wrong visible effect. For
instance, a wrong assignment to a variable may imply a misbehaviour later on,
when the value of the variable is printed on the screen. Usually, the programmer
has a very precise idea about which line of code makes the misbehaviour visible,
but a non trivial debugging activity may be needed to find the bug. Indeed,
debugging practice requires to put a breakpoint before the line of code where
the programmer thinks the bug is, and use step-by-step execution from there
to find the wrong line of code. However, the guess of the location of the bug is
frequently wrong, causing the breakpoint to occur too late (after the bug) and
a new execution with an updated guess is often needed. Reversible debugging
practice is more direct: first, run the program and stop when the visible misbe-
haviour is reached; then, execute backwards (possibly step-by-step) looking for
the causes of the misbehaviour until the bug is found.

With these premises, it is no surprise that reversible debugging has been
deeply explored, as shown for instance by the survey in [11]. Indeed, many debug-
gers provide features for reversible execution, including popular open source
debuggers such as GDB [8] as well as tools from big corporations such as
Microsoft, the case of WinDbg [34].

However, the problem is far less settled for concurrent and distributed pro-
grams. We remark that nowadays most of the software is concurrent, either since
the platform is distributed, the case of Internet or the Cloud, or to overcome the
advent of the power wall [46]. Finding bugs in concurrent and distributed soft-
ware is more difficult than in sequential software [33], since faults may appear
or disappear according to the speed of the different processes and of the net-
work communications. The bugs generating these faults, called Heisenbugs, are
thus particularly challenging because they are rather difficult to reproduce. Two
approaches to reversible debugging of concurrent systems have been proposed.
Using backtracking,1 actions are undone in reverse order of execution, while using
causal-consistent reversibility [25] actions can be undone in any order, provided
that the consequences of a given action, if any, are undone beforehand. Note
that, by exploring a computation back and forth using either backtracking or
causal-consistent reversibility one is guaranteed that Heisenbugs that occurred
in the computation will not disappear.

1 Backtracking sometimes refer to the exploration of a set of possibilities: this is not
the case here, since backward execution is (almost) deterministic.
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This paper will present two lines of research on debugging for concurrent
systems developed within the European COST Action IC1405 on “Reversible
Computation - Extending Horizons of Computing” [23]. They share the use of
state saving to enable backward computation (this is called a Landauer embed-
ding [24], and it is needed to tackle languages which are irreversible) and a formal
approach aiming at supporting debugging tools with a theory guaranteeing the
desired properties. The first line of research [20–22] (Sect. 3) supports backtrack-
ing (apart from some non relevant actions) for a concurrent imperative language
with shared memory, while the second line of research [28–30,36] (Sect. 4) sup-
ports causal-consistent reversibility for a core subset of the functional message-
passing language Erlang. We will showcase both the approaches on the same
airline booking example (Sect. 2), coded in the two languages. Related work is
discussed in Sect. 5 and final remarks are presented in Sect. 6.

2 Airline Booking Example

In this section we will introduce an example program that contains a bug, and
discuss a specific execution leading to a corresponding misbehaviour. This exam-
ple will be used as running example throughout the paper. We will show this
example in the two programming languages needed for the two approaches men-
tioned above. We begin by introducing each of these languages.

2.1 Imperative Concurrent Language

Our first language is much like any while language, consisting of assignments,
conditional statements and while loops. Support has also been added for block
statements containing the declaration of local variables and/or procedures, as
well as procedure call statements. Further to this, removal statements are intro-
duced to “clean up” at the end of a block, where any variables or procedures
declared within the block are removed. Our language also contains unique names
given to each conditional, loop, block, procedure declaration and call state-
ment, named construct identifiers (represented as i1.0, w1.0, b1.0, etc.), and
sequences of block names in which a given statement resides named paths (rep-
resented as pa). Both of these are used to handle variable scope, allowing one to
distinguish different variables with the same name. The final addition to our lan-
guage is interleaving parallel composition. A parallel statement, written P par Q
allows the execution of the programs P and Q to interleave. All statements except
blocks contain a stack A that is used to store identifiers (see below). The syntax
of our language follows, where ε represents an empty program. Note that ε is
the neutral element of sequential and parallel composition. We write (pa,A)?
to denote the fact that (pa,A) is optional. We also write In, Wn, Bn, Cn to
range, respectively, over identifiers for conditionals, while loops, blocks and call
statements. Also, n refers to the name of a procedure.
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P ::= ε | S | P; P | P par P

S ::= skip (pa,A)? | X = E (pa,A) | if In B then P else Q end (pa,A)

| while Wn B do P end (pa,A) | begin Bn BB end | call Cn n (pa,A)

BB ::= DV; DP; P; RP; RV

DV ::= ε | var X = v (pa,A); DV DP ::= ε | proc Pn n is P end (pa,A); DP

RV ::= ε | remove X = v (pa,A); RV RP ::= ε | remove Pn n is P end (pa,A); RP

Operational Semantics. Our approach (see [20] for a detailed explanation)
to reversing programs starts by producing two versions of the original program.
The first one, named the annotated version, performs forward execution and
saves any information that would be lost in a normal computation but is needed
for inversion (named reversal information and saved into our auxiliary store δ).
Identifiers are assigned to statements as we execute them, capturing the inter-
leaving order needed for correct inversion. The second one, named the inverted
version, executes forwards but simulates reversal using the reversal information
as well as the identifiers to follow backtracking order. We comment here that
we use ‘inversion’ to refer to both the process of producing the program code
of the inverted version (program inverter [1]), and to the process of executing
the inverted version of a program. A reverse execution computes all parallel
statements as in a forward execution, but it uses identifiers to determine which
statement to invert next (instead of nondeterministically deciding). For pro-
grams containing many nested parallel statements, the overhead of determining
the correct interleaving order increases, though we still deem this as reasonable
[19]. Note that using a nondeterministic interleaving for the reverse execution
is not possible, since it is not guaranteed to behave correctly (e.g., requiring
information from the auxiliary store that is not there may cause an execution to
be stuck). However, a small number of execution steps, including closing a block
and removing a skip, do not use an identifier and can therefore be interleaved
nondeterministically during an inverse execution. Forward and reverse execution
are each defined in terms of a non-standard, small step operational semantics.
Our semantics perform both the expected execution (forward and reverse respec-
tively) and all necessary saving/using of the reversal information. Consider the
example rule [D1a] for assignments, which is a reversibilisation of the traditional
irreversible semantics of an assignment statement [51].

[D1a]
m = next() (e pa | δ, σ, γ, �) ↪→∗

a (v | δ, σ, γ, �) evalV (γ,pa,X) = l

(X = e (pa,A) | δ, σ, γ, �)
m−→ (skip m:A | δ[(m,σ(l)) ⇀ X], σ[l �→ v], γ, �)

As shown here, this rule consists of the evaluation of the expression e to the
value v, evaluation of the variable X to a memory location l and finally the
assigning of the value v to the memory location l as expected. Alongside this,
the rule also pushes the old value of the variable (the current value held at the
memory location, namely σ(l)) onto the stack for this variable name within δ
(δ[(m,σ(l)) ⇀ X], where ⇀ denotes a push operation). This old value is saved
alongside the next available identifier m, returned via the function next() and
used within the rule to record interleaving order (represented using the labelled
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Fig. 1. Language syntax rules

arrow m−→). This identifier m is also inserted into the stack A corresponding to
this specific assignment statement, represented as m:A.

Now consider the rule [D1r] from our inverse semantics for reversing assign-
ments (that executed forwards via [D1a]).

[D1r]
A = m:A′ m = previous() δ(X) = (m,v):X′ evalV (γ,pa,X) = l

(X = e (pa,A) | δ, σ, �)
m� (skip A′ | δ[X/X′], σ[l �→ v], �)

This rule first ensures this is the next statement to invert using the identifier
m, which must match the last used identifier (previous()) and be present in
both the statements stack (A = m:A′) and the auxiliary store alongside the old
value (δ(X) = (m,v):X′). Provided this is satisfied, this rule then removes all
occurrences of m, and assigns the old value v retrieved from δ to the corresponding
memory location. Note that e appears exactly as in the original version but it is
not evaluated, and that the functions next() and previous() both update the
next and previous identifiers respectively as a side effect.

2.2 Erlang

Our second approach deals with a relevant fragment of the functional and con-
current language Erlang. We show in Fig. 1 the syntax of its main constructs,
focusing on the ones needed in our running example. We drop from the syntax
some declarations related to module management, which are orthogonal to our
purpose in this paper.

A program is a sequence of function definitions, where each function has a
name (an atom, denoted by a) and is defined by a number of equations of the
form ai(pi1, . . . , pini

) when gi → ei, where pi1, . . . , pini
are patterns (i.e.,

terms built from variables and data constructors), gi is a guard (typically an
arithmetic or relational expression only involving built-in functions), and ei is
an arbitrary expression. As is common, the variables in pi1, . . . , pini

are the
only variables that may occur free in gi and ei. The body of a function is an
expression, which can include variables, literals (i.e., atoms, integers, floating
point numbers, the empty list [ ], etc.), lists (using Prolog-like notation, i.e.,
[e1|e2] is a list with head e1 and tail e2), tuples (denoted by {e1, . . . , en}),2

2 The only data constructors in Erlang (besides literals) are the predefined functions
for lists and tuples.
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function applications (we do not consider higher order functions in this paper
for simplicity), pattern matching, sequences (denoted by comma), receive expres-
sions, spawn (for creating new processes), “!” (for sending a message), and self.
Note that some of these functions are actually built-ins in Erlang.

In contrast to expressions, patterns are built from variables, literals, lists, and
tuples. Patterns can only contain fresh variables. In turn, values are built from
literals, lists, and tuples (i.e., values are ground patterns). In Erlang, variables
start with an uppercase letter.

Let us now informally introduce the semantics of Erlang constructions. In the
following, substitutions are denoted by Greek letters σ, θ, etc. A substitution σ
denotes a mapping from variables to expressions, where Dom(σ) is its domain.
Substitution application σ(e) is also denoted by eσ.

Given the pattern matching p = e, we first evaluate e to a value, say v; then,
we check whether v matches p, i.e., there exists a substitution σ for the variables
of p with v = pσ (otherwise, an exception is raised). Then, the expression reduces
to v, and variables are bound according to σ. Roughly speaking, a sequence
(p = e1, e2) is equivalent to the expression let p = e1 in e2 in most functional
programming languages.

A similar pattern matching operation is performed during a function applica-
tion a(e1, . . . , en). First, one evaluates e1, . . . , en to values, say v1, . . . , vn. Then,
we scan the left-hand sides of the equations defining the function a until we find
one that matches a(v1, . . . , vn). Let a(p1, . . . , pn) when g → e be such equation,
with a(v1, . . . , vn) = a(p1, . . . , pn)σ. Here, we should also check that the guard,
gσ, reduces to true. In this case, execution proceeds with the evaluation of the
function’s body, eσ.

Let us now consider the concurrent features of our language. In Erlang, a run-
ning system can be seen as a pool of processes that can only interact through
message sending and receiving (i.e., there is no shared memory). Received mes-
sages are stored in the queues of processes until they are consumed; namely,
each process has one associated local (FIFO) queue. A process is uniquely iden-
tified by its pid (process identifier). Message sending is asynchronous, while
receive instructions block the execution of a process until an appropriate mes-
sage reaches its local queue (see below).

We consider the following functions with side-effects: self, “!”, spawn, and
receive. The expression self() returns the pid of a process, while p ! v evaluates
to v and, as a side-effect, sends message v to the process with pid p, which
will be eventually stored in p’s local queue. New processes are spawned with
a call of the form spawn(mod, a, [v1, . . . , vn]), where mod is the name of the
module declaring function a, and the new process begins with the evaluation of
the function application a(v1, . . . , vn). The expression spawn(mod, a, [v1, . . . , vn])
returns the (fresh) pid assigned to the new process.

Finally, an expression “receive p1 when g1 → e1; . . . ; pn when gn → en end”
should find the first message v in the process’ queue (if any) such that v matches
some pattern pi (with substitution σ) and the instantiation of the corresponding
guard giσ reduces to true. Then, the receive expression evaluates to eiσ, with
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the side effect of deleting the message v from the process’ queue. If there is no
matching message in the current queue, the process suspends until a matching
message arrives.

2.3 Airline Code

We are now ready to describe the example. Consider a model of an airline book-
ing system, where multiple agents sell tickets for the same flight. In order to
keep the example concise, we consider only two agents selling tickets in parallel,
with three seats initially available. The code of the example is shown in List-
ing 1.1, written in the concurrent imperative programming language described
in Sect. 2.1.

The code contains two while loops operating in parallel (lines 10–16 and 18–
24), where each loop models the operation of a single agent. Let us consider the
first loop. For each iteration, the agent checks whether any seat remains (line
11). As long as the number of currently available seats is greater than zero, the
agent is free to sell a ticket via the procedure named sell (called at line 12).
Once the number of available tickets has reached zero, each agent will then close,
terminating its loop.

As previously mentioned, this program can show a misbehaviour under cer-
tain execution paths. Recall the simplified setting of three initially available
seats. Consider an execution that begins with each agent selling a single ticket
(allocating one seat) via one full iteration of each while loop (the interleaving
among the two iterations is not relevant). At this point, both agents remain open
(since agent1 = 1 and agent2 = 1), and the current number of seats is 1. Now
assume that the execution continues with the following interleaving. The condi-
tion of each while loop is checked, both of which will evaluate to true as each
agent is open. Next, the execution of each loop body begins with the evaluation
of the guard of each conditional statement. They will both evaluate to true, as
there is at least one seat available. At this point, each agent is committed to
selling one more ticket, even if only one seat is available. The rest of the execu-
tion can then be finished under any interleaving. The important thing to note
here is that the final number of free seats is -1. This is an obvious misbehaviour,
as the two agents allocated four tickets when only three seats were available.
This misbehaviour occurs since the programmer assumed that the checking for
an available seat and its allocation were atomic, but there is no mechanism
enforcing this.

Listing 1.2 shows the same example coded in Erlang. A call to the initial
function, main, spawns two processes (the agents) that start with the execution
of function calls agent(1,Main) and agent(2,Main), respectively. Here, Main
is a variable with the pid of the main process, which is obtained via a call to the
predefined function self.

Then, at line 8, the main process calls to function seats with argument 3 (the
initial number of available seats). From this point on, the main process behaves
as a server that executes a potentially infinite loop that waits for requests and
replies to them. Here, the state of the process is given by the argument Num which
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1 seats = 3;
2 begin b0.0
3 var agent1 = 1;
4 var agent2 = 1;
5 proc p0.0 sell is
6 seats = seats - 1;
7 end;
8
9 par {

10 while w0.0 (agent1 == 1) do
11 if i0.0 (seats > 0) then
12 call c0.0 sell;
13 else
14 agent1 = 0;
15 end;
16 end;
17 } {
18 while w1.0 (agent2 == 1) do
19 if i1.0 (seats > 0) then
20 call c1.0 sell;
21 else
22 agent2 = 0;
23 end;
24 end;
25 }
26 remove proc p0.0 sell end;
27 remove var agent2 = 1;
28 remove var agent1 = 1;
29 end

Listing 1.1. Airline booking example in a concurrent imperative language. All paths
and identifier stacks are omitted as these are inserted automatically.

represents the current number of available seats. The server accepts two kinds of
messages: {numOfSeats,Pid}, a request to know the current number of available
seats, and {sell,Pid}, to decrease the number of available seats (analogously
to the procedure sell in Listing 1.1). In the first case, the number of available
seats is sent back to the agent that performed the request (Pid ! Num); in the
second case, the number of the booked seat is sent.3 The behaviour of the agents
(lines 17–23) is simple. An agent first sends a request to know the number of
available seats, Pid ! {numOfSeats,self()}, where self() is required for the
main process to be able to send a reply back to the sender. Then, the agent
suspends its execution waiting for an answer {seats,Num}: if Num is greater than
zero, the agent sends a new message to sell a seat (Pid ! {sell,self()}) and

3 We note that the number of the booked seat, Num, is not used by function agent

in our example, but might be used in a more realistic program. We keep this value
anyway since it will ease the understanding of the trace in Sect. 4.
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1 -module(airline ).

2 -export([main/0,agent /2]).

3 8

4 main() ->

5 Main = self(),

6 spawn (?MODULE , agent , [1,Main]),

7 spawn (?MODULE , agent , [2,Main]),

8 seats (3).

9

10 seats(Num) ->

11 receive

12 {numOfSeats ,Pid} -> Pid ! {seats ,Num}, seats(Num);

13 {sell ,Pid} -> io:format("Seat sold!~n"),

14 Pid ! {booked ,Num},seats(Num -1)

15 end.

16

17 agent(NAg ,Pid) ->

18 Pid ! {numOfSeats ,self ()},

19 receive

20 {seats ,Num} when Num > 0 -> Pid ! {sell ,self ()},

21 receive {booked ,_} -> agent(NAg ,Pid) end;

22 _ -> io:format("Agent~p done!~n",[NAg])

23 end.

Listing 1.2. Airline booking example, in Erlang.

receives the confirmation ({booked, });4 otherwise, it terminates the execution
with the message “AgentN done!”, where N is either 1 or 2.

3 Backtracking in a Concurrent Imperative Language

In this section we describe a state-saving approach to reversibility in the con-
current imperative programming language described in Sect. 2.1. We begin by
discussing our approach and its use within the debugging of the airline example
(see Sect. 2.3), along with our simulation tool [20,21].

As described in more detail in [21], we have produced a simulator implement-
ing the operational semantics of our approach. This simulator is capable of pars-
ing a program, automatically inserting removal statements, construct identifiers
and paths, and simulating both forward and reverse execution. Each execution
can be either end-to-end, or step-by-step.

We first execute the forward version of our airline example completely. This
execution produces the annotated version in Fig. 2a, where the identifier stack for
each statement has been populated capturing an interleaving order that experi-
ences the bug as outlined in Sect. 2.3. The inverted version of the airline example
is shown in Fig. 2b, where the overall statement order has been inverted. Note
that some annotations are omitted to keep this source code concise (e.g., no paths

4 Anonymous variables are denoted by an underscore “ ”.
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Fig. 2. Final annotated and inverted versions of the airline example, with paths omitted

are shown). We start the debugging process at the beginning of the execution of
the inverted version (line 1 of Fig. 2b). Recall that all expressions or conditions
are not evaluated or used during an inverse execution. Using the final program
state showing the misbehaviour (produced via the annotated execution with
seats = -1), the simulator begins by opening the block and re-declaring both
local variables and the procedure, using identifiers 40–38. From here, the execu-
tion continues with the parallel statement. The final iteration of each while loop
is reversed (simulating the inversion of the closing of each agent) using identifiers
37–28. Now the penultimate iteration of each while loop must be inverted. The
consecutive identifiers 27 and 26 are then used to ensure that each of the condi-
tional statements (lines 11 and 19) are opened, using two true values retrieved
from the reversal information saved.

The execution then continues using identifiers 25–20, where each loop almost
completes the current iteration, reversing the last time each of them allocated a
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Fig. 3. Stopping position of the inverse execution (containing paths automatically
inserted by the simulator)

seat. This produces the state where seats = 1, and where the next available step
is to close either of the inverse conditional statements. Though the identifiers
ensure we must start by closing the conditional with identifier 19, the fact that
both can be closed implies that both are open at the same time. This current
position within the inverse execution is shown in Fig. 3, where the command
‘display loops’ outputs all current while loops (agents) with arrows indicating
the next statement to be executed. It is clear from our semantics (see [20]) that
the closing of an inverted conditional is the reverse of opening its forward version.
Since the two conditionals have been opened using consecutive identifiers, one
can see that each committed to selling a ticket. Given that the current state has
seats = 1, this execution commits to selling two tickets when only one remains.
It is therefore clear that this is an atomicity violation, since interleaving of
other actions is allowed between the checking for at least one free seat and the
allocation of it. We have therefore shown how the simulator implementing our
approach to reversibility can be used during the debugging process of an example
bug.

4 Causal-Consistent Reversibility in Erlang

In this section we will discuss how to apply causal-consistent reversible debugging
to the airline booking example in Sect. 2.3. Our approach to reversible debugging
is based on the following principles [29,30]:
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– First, we consider a reduction semantics for the language (a subset of Core
Erlang [5], which is an intermediate step in Erlang compilation). Our seman-
tics includes two transition relations, one for expressions (which is mostly a
call-by-value semantics for a functional language) and one for systems, i.e.,
collections of processes, possibly interacting through message passing. An
advantage of this modular design is that only the transition relation for sys-
tems needs to be modified in order to produce a reversible semantics.

– Then, we instrument the standard semantics in different ways. On the one
hand, we instrument it to produce a log of the computation; namely, by
recording all actions involving the sending and receiving of messages, as well as
the spawning of new processes (see [30] for more details). On the other hand,
one can instrument the semantics so that the configurations now carry enough
information to undo any execution step, i.e., a typical Landauer embedding.
Producing then a backward semantics that proceeds in the opposite direction
is not difficult. Here, the configurations may include both a log—to drive
forward executions—and a history—to drive backward executions.

– It is worthwhile to note that forward computations need not follow exactly
the same steps as in the recorded computation (indeed the log does not record
the total order of steps). However, it is guaranteed that the admissible com-
putations are causally equivalent to the recorded one; namely, they differ only
for swaps of concurrent actions. Analogously, backward computations need
not be the exact inverse of the considered forward computation, but ensuring
that backward steps are causal-consistent suffices. This degree of freedom is
essential to allow the user to focus on the process and/or actions of interest
during debugging, rather than inspecting the complete execution (which is
often impractical).

– Finally, we define another layer on top of the reversible semantics in order
to drive it following a number of requests from the user, e.g., rolling back
up to the point where a given process was spawned, going forward up to the
point where a message is sent, etc. This layer essentially implements a stack
of requests that follows the causal dependencies of the reversible semantics.

In the following, we consider the causal-consistent reversible debugger
CauDEr [27,28] which follows the principles listed above.

CauDEr first translates the airline example into Core Erlang [5]. Then one
can execute the program, either using a built-in scheduler, or using the log of an
actual execution [30].

Here, if we compile the program in the standard environment and execute
the call main(), we get the following output:

Seat sold!
Seat sold!
Seat sold!
Seat sold!
Agent1 done!
Agent2 done!
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Fig. 4. CauDEr debugging session

which is clearly incorrect since we only had three seats available.
By using the logger and, then, loading both the program and the log into

CauDEr (as described in [30]), we can replay the entire execution and explore
the sequence of concurrent actions. Figure 4 shows the final state (on the left)
and the sequence of concurrent actions (on the right), where process 63 is the
main process, and processes 67 and 68 are the agents.

Now, we can look at the sequence of concurrent actions, where messages are
labelled with a unique identifier, added by CauDEr, which is shown in brackets
to the right of the corresponding line:

Proc. 63 spawns Proc. 67
Proc. 63 spawns Proc. 68
Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (0)

... 19 lines ...

Proc. 63 receives {’numOfSeats’,68} (10)
Proc. 63 sends {’seats’,1} to Proc. 68 (12)
Proc. 67 receives {’seats’,1} (9)
Proc. 67 sends {’sell’,67} to Proc. 63 (11)
Proc. 63 receives {’sell’,67} (11)
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Proc. 63 sends {’booked’,1} to Proc. 67 (14)
Proc. 68 receives {’seats’,1} (12)
Proc. 68 sends {’sell’,68} to Proc. 63 (13)
Proc. 63 receives {’sell’,68} (13)
Proc. 63 sends {’booked’,0} to Proc. 68 (16)
Proc. 67 receives {’booked’,1} (14)
Proc. 67 sends {’numOfSeats’,67} to Proc. 63 (15)
Proc. 63 receives {’numOfSeats’,67} (15)
Proc. 63 sends {’seats’,-1} to Proc. 67 (17)
Proc. 68 receives {’booked’,0} (16)
Proc. 68 sends {’numOfSeats’,68} to Proc. 63 (18)
Proc. 63 receives {’numOfSeats’,68} (18)
Proc. 63 sends {’seats’,-1} to Proc. 68 (19)

One can see that seat number 0 (which does not exist!) has been booked by
process 68, and the notification has been provided via message number 16.

A good state to explore is the one where message number 16 has been sent.
Here a main feature of causal-consistent reversible debugging comes handy: the
possibility of going to the state just before a relevant action has been per-
formed, by undoing it, including all and only its consequences. This is called a
causal-consistent rollback. CauDEr provides causal-consistent rollbacks for var-
ious actions, including send actions. Thus, the programmer can invoke a Roll
send command with message identifier 16 as a parameter.

In this way, one discovers that the message has been sent by process 63
(as expected, since process 63 is the main process). By exploring its state one
understands that, from the point of view of process 63, sending message 16 is
correct, since it is the only possible answer to a sell message. The bug should
be thus before.

From the program code, the programmer knows that whether seat Num is
available or not is checked by a message of the form {numOfSeats,Pid}, which
is answered with a message of the form {seats,Num}, where Num is the number
of available seats.

Looking again at the concurrency actions, the programmer can see that pro-
cess number 68 was indeed notified of the availability of a seat by message
number 12.

We can use again Roll send, now with parameter 12, to check whether this
send is correct or not. We discover that indeed the send is correct since, when the
message is sent, there is one available seat. However, here, another window comes
handy: the Roll log window that shows which actions (causally dependent on
the one undone) have been undone during a rollback, which shows:

Roll send from Proc. 63 of {’booked’,1} to Proc. 67 (14)
Roll send from Proc. 67 of {’numOfSeats’,67} to Proc. 63 (15)
Roll send from Proc. 63 of {’seats’,1} to Proc. 68 (12)
Roll send from Proc. 68 of {’sell’,68} to Proc. 63 (13)
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By checking it the programmer sees that also the interactions between process
67 and process 63 booking seat 1 are undone. Hence the problem is that, in
between the check for availability and the booking, another process may interact
with main, stealing the seat; thus, the error is an atomicity violation.

Of course, given the simplicity of the system, one could have spotted the bug
directly by looking at the code or at the full sequence of message exchanges,
but the technique above is quite driven by the visible misbehaviour, hence it
will better scale to larger systems (e.g., with more seats and agents, or with
additional functionalities).

We remark that, while the presentation above concentrates on the debugger
and its practical use, this line of research also deeply considered its theoretical
underpinning, as briefly summarised at the beginning of the section. Thanks to
this, relevant properties have been proved, e.g., that if a misbehaviour occurs in
a computation then the same misbehaviour will occur also in each replay [30].

5 Related Work

Reversible computation in general, and reversible debugging in particular, have
been deeply explored in the literature.

A line of research considers naturally reversible languages, that is languages
where only reversible programs can be written. Such approaches include the
imperative languages Janus [49,50], R-CORE [17] and R-WHILE [16], and the
object-oriented languages Joule [43] and ROOPL [18]. These approaches require
dedicated languages, and cannot be applied to mainstream languages like Erlang
or a classic imperative language, as we do in this paper.

The backtracking approach has been applied, e.g., in the Reverse C Compiler
(RCC) defined by Perumalla et al. [6,37]. It supports the entire programming
language C, but lacks a proof of correctness, which is instead provided by our
approaches. The Backstroke framework [48] is a further example, supporting
the vast majority of the programming language C++. This framework has been
used to provide reverse execution in the field of Parallel Discrete Event Simula-
tion (PDES) [13], as described in more recent works by Schordan et al. [40–42].
Similar approaches have been used for debugging, e.g., based on program instru-
mentation techniques [7]. Identifiers and keys are used to control execution in
the work by Phillips and Ulidowski [38,39]. Another related work is omniscient
debugging, where each assignment and method call is stored in an execution
history, which can be used to restore any desired program state. An example of
such a debugger written for Java was proposed by Lewis [32].

Causal-consistent reversibility has been mainly studied in the area of foun-
dational process calculi such as CCS [10] and its variants [35,38], π-calculus [9],
and higher-order π-calculus [26] and coordination languages such as Klaim [15].
The application to debugging has been first proposed in [14] in the context of
the toy functional language μOz. A related approach is Actoverse [44], for Akka-
based applications. It provides many relevant features complementary to ours,
such as a partial-order graphical representation of message exchanges. On the
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other side, Actoverse allows one to explore only some states of the computa-
tion, such as the ones corresponding to message sending and receiving. We also
mention Causeway [45], which however is not a full-fledged debugger, but just a
post-mortem traces analyser.

6 Conclusion

We presented two approaches to reversible debugging of concurrent systems, we
will now briefly compare them. Beyond the language they consider, the main
difference between the two approaches is in the order in which execution steps
can be reversed. The backtracking approach undoes them in reverse order of
execution. This means that there is no need to track dependencies, and the user
of the debugger can easily anticipate which steps will be undone by looking at
identifiers. The causal-consistent approach instead allows independent steps of
an execution to be reversed in any order, hence tracking dependencies between
steps is crucial. This offers the benefit that only the steps strictly needed to
reach the desired point of an execution need to be reversed, and steps which
happened in between but were actually independent are disregarded.

Debugging is a relevant application area for reversible computation, but
reversible debugging for concurrent and distributed systems is still in its infancy.
While different techniques have been put forward, they are not yet able to deal
with real, complex systems. A first reason is that they do not tackle mainstream
languages (Erlang could be considered mainstream, but only part of the language
is currently covered). When this first step will be completed, then runtime over-
head and size of the logs will become relevant problems, as they are now in the
setting of sequential reversible debugging.
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