5,935 research outputs found

    Hiddenocysta matsuokae gen. nov. et sp. nov. from the Holocene of Vancouver Island, British Columbia, Canada

    Get PDF
    A new dinoflagellate cyst genus and species are described here as Hiddenocysta gen. nov. and Hiddenocysta matsuokae sp. nov. from Holocene sediments in a core from the west coast of Vancouver Island (British Columbia, Canada). The genus Hiddenocysta encompasses spherical to ovoid skolochorate cysts, characterized by a gonyaulacoid plate pattern and a 2P precingular archeopyle. The species H. matsuokae is characterized by a granular wall and slender trifurcate processes with heavily perforated process bases. Two end members are described here based on process morphology and number of processes (formas 1 and 2). Cyst wall chemistry is analyzed using micro-Fourier transform infrared (FTIR) spectroscopy and reveals a unique dinosporin composition consistent with a gonyaulacoid autotrophic feeding strategy

    Modeling of electron emission processes accompanying Radon-α\alpha-decays within electrostatic spectrometers

    Get PDF
    Electrostatic spectrometers utilized in high-resolution beta-spectroscopy studies such as in the Karlsruhe Tritium Neutrino (KATRIN) experiment have to operate with a background level of less than 10^(-2) counts per second. This limit can be exceeded by even a small number of Rn-219 or Rn-220 atoms being emanated into the volume and undergoing alpha-decay there. In this paper we present a detailed model of the underlying background-generating processes via electron emission by internal conversion, shake-off and relaxation processes in the atomic shells of the Po-215 and Po-216 daughters. The model yields electron energy spectra up to 400 keV and electron multiplicities of up to 20 which are compared to experimental data.Comment: 7 figure

    Tan(beta)-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon

    Full text link
    We report on a two-loop supersymmetric contribution to the magnetic moment (g-2)_mu of the muon which is enhanced by two powers of tan(beta). This contribution arises from a shift in the relation between the muon mass and Yukawa coupling and can increase the supersymmetric contribution to (g-2)_mu sizably. As a result, if the currently observed 3 sigma deviation between the experimental and SM theory value of (g-2)_mu is analyzed within the Minimal Supersymmetric Standard Model (MSSM), the derived constraints on the parameter space are modified significantly: If (g-2)_mu is used to determine tan(beta) as a function of the other MSSM parameters, our corrections decrease tan(beta) by roughly 10% for tan(beta)=50.Comment: 4 pages, 1 figur

    Genetic Characterization of the Tick-Borne Orbiviruses

    Get PDF
    The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome

    Finite temperature dynamics of vortices in the two dimensional anisotropic Heisenberg model

    Get PDF
    We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.Comment: 12 pages, 8 figures, accepted for publication in European Physical Journal B (uses EPJ LaTeX

    Low autocorrelated multi-phase sequences

    Full text link
    The interplay between the ground state energy of the generalized Bernasconi model to multi-phase, and the minimal value of the maximal autocorrelation function, Cmax=maxKCKC_{max}=\max_K{|C_K|}, K=1,..N1K=1,..N-1, is examined analytically and the main results are: (a) The minimal value of minNCmax\min_N{C_{max}} is 0.435N0.435\sqrt{N} significantly smaller than the typical value for random sequences O(logNN)O(\sqrt{\log{N}}\sqrt{N}). (b) minNCmax\min_N{C_{max}} over all sequences of length N is obtained in an energy which is about 30% above the ground-state energy of the generalized Bernasconi model, independent of the number of phases m. (c) The maximal merit factor FmaxF_{max} grows linearly with m. (d) For a given N, minNCmaxN/m\min_N{C_{max}}\sim\sqrt{N/m} indicating that for m=N, minNCmax=1\min_N{C_{max}}=1, i.e. a Barker code exits. The analytical results are confirmed by simulations.Comment: 4 pages, 4 figure

    Levinson theorem for Aharonov-Bohm scattering in two dimensions

    Full text link
    We apply the recently generalized Levinson theorem for potentials with inverse square singularities [Sheka et al, Phys.Rev.A, v.68, 012707 (2003)] to Aharonov-Bohm systems in two-dimensions. By this theorem, the number of bound states in a given m-th partial wave is related to the phase shift and the magnetic flux. The results are applied to 2D soliton-magnon scattering.Comment: 5 pages (REVTeX

    Vortex motion in a finite-size easy-plane ferromagnet and application to a nanodot

    Full text link
    We study the motion of a non-planar vortex in a circular easy-plane ferromagnet, which imitates a magnetic nanodot. Analysis was done using numerical simulations and a new collective variable theory which includes the coupling of Goldstone-like mode with the vortex center. Without magnetic field the vortex follows a spiral orbit which we calculate. When a rotating in-plane magnetic field is included, the vortex tends to a stable limit cycle which exists in a significant range of field amplitude B and frequency ω\omega for a given system size L. For a fixed ω\omega, the radius R of the orbital motion is proportional to L while the orbital frequency Ω\Omega varies as 1/L and is significantly smaller than ω\omega. Since the limit cycle is caused by the interplay between the magnetization and the vortex motion, the internal mode is essential in the collective variable theory which then gives the correct estimate and dependency for the orbit radius RBL/ωR\sim B L/\omega. Using this simple theory we indicate how an ac magnetic field can be used to control vortices observed in real magnetic nanodots.Comment: 15 pages (RevTeX), 14 figures (eps
    corecore