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Abstract. We study the effects of finite temperature on the dynamics of non-planar vortices in the classical,
two-dimensional anisotropic Heisenberg model with XY - or easy-plane symmetry. To this end, we analyze a
generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective
variable theory with no adjustable parameters we derive an equation of motion for the vortices with
stochastic forces which are shown to represent white noise with an effective diffusion constant linearly
dependent on temperature. We solve these stochastic equations of motion by means of a Green’s function
formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence
for the variance of the components perpendicular to the driving force. We compare the analytical results
with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25%
of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is
not appropriate for higher temperatures as well as the discreteness effects observed in the numerical
simulations.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion – 75.10.Hk Classical
spin models – 75.30.-m Intrinsic properties of magnetically ordered materials

1 Introduction

In the past two decades, solitons and other nonlinear co-
herent excitations have become a very generic and useful
paradigm for intrinsically nonlinear phenomena in many
different fields [1–3]. These excitations are especially im-
portant in low dimensional systems, in terms of their re-
lationship to key questions such as the existence of long
range order, the mechanisms of phase transitions or the
response to external influences [4]. Unfortunately, for most
problems of interest or in applications, it is not possible
to develop an exact theory of soliton dynamics or statisti-
cal mechanics, either because the corresponding equation
of motion is not integrable or because perturbation terms
added to it in order to account for relevant effects destroy
integrability. As a consequence, much effort has been de-
voted to develop approximate techniques allowing one to
gain insight into soliton behavior. Among those, a very
useful procedure is that of collective variables or coordi-
nates [5], which yields very accurate results for soliton-like
objects with a well localized spatial structure. Collective
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coordinate techniques have, in addition, the advantages
of their mathematical simplicity and their applicability to
very many perturbed soliton-bearing equations, including
most of those which are physically relevant. The validity
of this kind of calculations has provided grounds to what
is nowadays called the “particle-like picture” of solitons:
in view of the fact that a global coordinate, such as their
center of mass, is enough to describe their behavior under
perturbations, it has been concluded that solitons can be
treated as point-like particles in many situations.

One important context where the above ideas are rele-
vant is that of two-dimensional (2D) magnets and their
collective excitations such as vortices or domain walls.
This is a far from an academic subject: indeed, in the last
few years several classes of materials have been found or
fabricated for which magnetic interactions within planes
of their crystalline structure are much stronger than be-
tween these planes, and therefore the magnetic properties
are basically 2D. Materials in these classes include, for
instance, layered magnets (such as Rb2CrCl4), graphite
intercalated compounds (such as CoCl2), magnetic lipid
layers (such as manganese stearate), and high Tc supercon-
ductors (see references in, e.g., [6]). Many of these systems
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can be described by the classical 2D anisotropic Heisen-
berg model with XY - or easy-plane symmetry, given by

H = −J
∑
〈m,n〉

[
Smx S

n
x + Smy S

n
y + (1− δ)Smz S

n
z

]
, (1)

where the subindices x, y or z stand for the spin compo-
nents, 0 < δ ≤ 1, and 〈m,n〉 labels nearest neighbors of
a square lattice. Among its excitations, specially interest-
ing ones are vortices, that are planar (i.e., with null Sz
components) if δ > 0.297 and non-planar (i.e., with lo-
calized Sz structure) if δ < 0.297 [7,8]. Such non-planar
vortices are the specific object of our study as reported in
the remainder of the paper; however, the ideas we will be
discussing are general enough to be of interest in other,
related contexts where the system behavior is governed by
soliton-like structures.

The first application of a collective variable technique
to the motion of magnetic vortices and other nonlinear
magnetic excitations was carried out by Thiele [9,10]. For
steady state motion, when the shape S(r, t) of the excita-
tion in the continuum limit is rigid, he used the traveling
wave ansatz S(r, t) = S(r −X(t)) with constant velocity

Ẋ (the dot stands for derivative with respect to time) and
derived the following equation of motion,

GV × Ẋ + F = 0, (2)

where F is a static force, due to either an external field
or the interactions with other excitations. The gyrovector
GV , in turn, is an intrinsic quantity, produced by the exci-
tation itself and depending on its specific type. GV is per-
pendicular to the XY -plane; therefore, the gyrocoupling
force GV × Ẋ is formally equivalent to the Lorentz force.
Interestingly, Thiele’s equation, equation (2), is first order,
thus leading to non-Newtonian vortex dynamics. This is
somewhat unusual, as in many cases solitons are found
to behave as Newtonian point-like particles [5], obeying
Newton’s second law or its relativistic generalization. We
return to this point below.

The next step beyond Thiele’s approach was not taken
until very recently, when Mertens et al. [11] developed a
generalized collective variable theory for nonlinear coher-
ent excitations in classical systems with arbitrary Hamil-
tonians. Previously, Wysin et al. [12] had tried to gen-
eralize Thiele’s equation by allowing the vortex shape to
depend on the vortex velocity. In this way they derived
a second order (Newtonian) equation of motion, but it
was found that it did not agree with the simulations [11,
13]. Therefore, in [11] it was proposed that the dynamics
of a single excitation is governed by a hierarchy of equa-
tions of motion for the excitation center X(t). In addition,
the Newtonian or non-Newtonian character of the equa-
tion of motion was clarified: it was found that the type
of the excitation determines on which levels the hierarchy
can be truncated consistently: so-called gyrotropic (with
|GV | 6= 0) excitations are governed by odd-order equa-
tions and thus do not have Newtonian dynamics. Non-
gyrotropic excitations are described by even-order equa-
tions, i.e. by Newton’s equation in the first approximation.

This is the situation for, e.g., domain walls. The theory
in [11] was applied to non-planar (gyrotropic) vortices of
the 2D anisotropic Heisenberg model, and it was shown
that their dynamics is fully captured by the third-order
equation, fifth-order corrections being negligible [11].

Since the zero temperature dynamics of non-planar
vortices is completely understood, in this paper we now
concern ourselves with the study of non-planar vortex dy-
namics in the 2D Heisenberg ferromagnet at nonzero tem-
peratures. The purpose of this research is twofold: from
the theoretical point of view, it is important to learn
whether and when the vortex motion description in terms
of an effective particle dynamics holds, and what are its
main characteristics. In addition, the non-Newtonian char-
acter of non-planar vortices could be modified by temper-
ature, or the details of the dynamics could change as to
eliminate the need to go beyond a first order equation. We
note that if a collective coordinate theory at finite tem-
perature could be worked out, it would provide a first step
towards a statistical mechanics description of the model
behavior in terms of a vortex gas [14], as in the case of
one-dimensional soliton bearing systems [15]. On the other
hand, from the experimental point of view, insofar as the
motion of vortices has measurable consequences in inelas-
tic neutron scattering [16] and nuclear magnetic resonance
experiments [17], the effects of finite temperature on vor-
tex dynamics can have signatures in those measurements.
The study we carry out here is then necessary if there is
hope to compare the theoretical results to actual experi-
ments.

The presentation of our results proceeds as follows:
Section 2 contains the study of the free and the damped
vortex dynamics and the derivation of the corresponding
collective coordinate theory. At this point the study is
still deterministic, i.e., at zero temperature. Section 3 dis-
cusses how we incorporate the Langevin noise term to the
equations of motion. Afterwards, the collective coordinate
calculation is extended to the resulting Langevin-Landau-
Lifshitz equation, and the mean vortex trajectory and its
variance are computed. Section 4 contains a thorough dis-
cussion of the comparison of the theory to the numerical
Langevin dynamics simulation and the discussion of the
main features of the vortex motion. Finally, Section 5 is
devoted to the summary of our main conclusions.

2 Zero temperature dynamics

Our starting point is the damped Landau-Lifshitz equa-
tion, which reads

dSm

dt
= −Sm ×

∂H

∂Sm
− εSm ×

dSm

dt
, (3)

where Sm is the spin vector at lattice site m, H is the
Hamiltonian, in our case that of the anisotropic Heisen-
berg model (1), and ε is the damping parameter. Fol-
lowing references [9,10,18] we have chosen Gilbert damp-
ing [19], chiefly because it is isotropic, meaning that all the
spin components are equally damped, in contrast to the
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Landau-Lifshitz damping [20]. As stated in the introduc-
tion, our approach to the problem of vortex dynamics will
be both analytical and numerical: we first derive equations
of motion for the vortex center X(t), and afterwards we
compare with numerical simulations for our model, i.e.,
with results from numerical integration of (3) including
noise (see Sect. 3). The study of the deterministic (i.e.,
zero temperature) case we present in this section is an
obviously necessary first step in order to be able to under-
stand later the problem for the full Langevin equation.

To proceed, following [11] we assume that the shape of

a collective excitation depends on the velocity Ẋ and, as
shown in [11], in general also on higher order derivatives
of X(t). The corresponding generalized traveling wave An-
satz is

S(r, t) = S(r−X, Ẋ, Ẍ, . . . ,X(n)), (4)

which yields an (n + 1)th order differential equation for
X(t). As mentioned above, for gyrotropic excitations only
odd-order equations are relevant, and, in the case of the
non-planar vortices, it turned out that the third-order equ-
ation is sufficient to describe accurately all simulations
without damping [11]. Therefore, in this paper we use the
Ansatz (4) with n = 2 and apply it to the general case, i.e.,
in the presence of damping. Instead of using the Hamil-
tonian procedure described in [11], we will obtain the col-
lective variable equations of motion in a much more direct
way by performing the following operations with (3): leav-
ing out damping for the moment, we calculate

S

(
∂S

∂Xi
×
dS

dt

)
= −S

(
∂S

∂Xi
×

[
S×

δH

δS

])

= −S2 δH

δS

∂S

∂Xi

= −S2 ∂H

∂Xi
(5)

with i = 1, 2 in the case of our 2D system. H is the Hamil-
tonian density. According to our ansatz we insert on the
l.h.s.

dS

dt
=

∂S

∂Xj
Ẋj +

∂S

∂Ẋj

Ẍj +
∂S

∂Ẍj

...
Xj , (6)

integrate over r and divide by S2. In this way we obtain
the same third-order equation as that obtained in refer-
ence [11], which used Hamilton equations:

A
...
X + MẌ + GẊ = F (7)

with force F given by

Fi = −

∫
d2r

∂H

∂Xi
, (8)

gyrotensor G expressed as

Gij = S−2

∫
d2rS

∂S

∂Xi
×

∂S

∂Xj

=

∫
d2r

{
∂φ

∂Xi

∂ψ

∂Xj
−

∂φ

∂Xj

∂ψ

∂Xi

}
, (9)

mass tensor M with components

Mij = S−2

∫
d2rS

∂S

∂Xi
×

∂S

∂Ẋj

=

∫
d2r

{
∂φ

∂Xi

∂ψ

∂Ẋj

−
∂φ

∂Ẋj

∂ψ

∂Xi

}
, (10)

and third-order gyrotensor A given by

Aij = S−2

∫
d2rS

∂S

∂Xi
×

∂S

∂Ẍj

=

∫
d2r

{
∂φ

∂Xi

∂ψ

∂Ẍj

−
∂φ

∂Ẍj

∂ψ

∂Xi

}
. (11)

The classical spin is constrained to have a fixed magnitude
which we set to unity. Therefore, we will evaluate below
the expressions on the right hand sides using canonical
fields φ = arctan(Sy/Sx) and ψ = Sz for the spin vector:

S =
√

1− ψ2 cosφ ex +
√

1− ψ2 sinφ ey + ψ ez. (12)

At this time, we move on to consider the Gilbert damping
term in (3). The same operation sequence as above yields:

εS

[
∂S

∂Xi
×

(
S×

dS

dt

)]
= εS2 ∂S

∂Xi

dS

dt

= εS2

[
∂S

∂Xi

∂S

∂Xj
Ẋj +

∂S

∂Xi

∂S

∂Ẋj

Ẍj +
∂S

∂Xi

∂S

∂Ẍj

...
Xj

]
.

(13)

An integration over r gives three terms which can be com-
bined with the three terms on the l.h.s. of (7), i.e., the
damping appears in every order

(A + a)
...
X + (M + m)Ẍ + (G + g)Ẋ =

Â
...
X + M̂Ẍ + ĜẊ = F. (14)
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The components of the damping contribution to the ten-
sors are

gij = ε

∫
d2r

∂S

∂Xi

∂S

∂Xj

= ε

∫
d2r

{
(1− ψ2)

∂φ

∂Xi

∂φ

∂Xj
+

1

1− ψ2

∂ψ

∂Xj

∂ψ

∂Xi

}
,

(15)

mij = ε

∫
d2r

∂S

∂Xi

∂S

∂Ẋj

= ε

∫
d2r

{
(1− ψ2)

∂φ

∂Xi

∂φ

∂Ẋj

+
1

1− ψ2

∂ψ

∂Ẋj

∂ψ

∂Xi

}
,

(16)

aij = ε

∫
d2r

∂S

∂Xi

∂S

∂Ẍj

= ε

∫
d2r

{
(1− ψ2)

∂φ

∂Xi

∂φ

∂Ẍj

+
1

1− ψ2

∂ψ

∂Ẍj

∂ψ

∂Xi

}
.

(17)

We note that the first-order part of (14) was already de-
rived by Thiele [9].

Now, we address the problem of the explicit calculation
of all the tensor components. This is possible only if the
dynamic structure of the collective excitation is known.
The Hamiltonian density derived from (1) reads [7]

H =
JS2

2

{
(1− ψ2)(∇φ)2 + δ[4ψ2 − (∇ψ)2]

+
1

1− ψ2
(∇ψ)2

}
. (18)

In [11] the Hamilton equations were considered for a non-
planar vortex in the center of a circular system with free
boundary conditions. The vortex structure is complicated
in an inner region 0 ≤ r ≤ ac ≈ 3rv, where

rv =
1

2

√
1− δ

δ
(19)

characterizes the vortex core [7]. δ is the anisotropy pa-
rameter in (1). Recalling that non-planar vortices are sta-
ble for 0 < δ < 0.297 for a square lattice. we will use
δ = 0.1 for our simulations. We note that the inner re-
gion contributes very little to the integrals in (10, 11) and
(15–17); except for (9), the dominant contributions stem
from the outer region ac ≤ r ≤ L, if we choose a large
system radius L. Here the vortex has the following dy-
namic structure, which is known to be a very accurate
description from simulations [11]:

φ = φ0 + φ1 + φ2, ψ = ψ0 + ψ1 + ψ2 (20)

with

φ0 = q tan−1 x2

x1
, (21)

φ1 = p(x1Ẋ1 + x2Ẋ2), (22)

φ2 =
q

8δ
ln

r

eL
(x2Ẍ1 − x1Ẍ2), (23)

ψ0 ∼ p

√
rv

r
exp(−r/rv), (24)

ψ1 =
q

4δr2
(x2Ẋ1 − x1Ẋ2), (25)

and

ψ2 =
p

4δ
(x1Ẍ1 + x2Ẍ2). (26)

Here q = ±1 is the vorticity and p = ±1 is the polar-
ization, which determines to which side the out-of-plane
structure of the vortex points. Straightforward integra-
tions then yield the expressions of the tensor components:

Gij = Gεij , G = 2πpq, (27)

Mij = Mδij , M =
πq2

4δ
ln
L

ac
+ CM , (28)

Aij = Aεij , A =
G

16δ

(
L2 − a2

c

)
+ CA, (29)

gij = gδij , g = επq2 ln
L

ac
+ Cg, (30)

mij = mεij , m = ε
G

4

(
L2 − a2

c

)
+ Cm, (31)

and

aij = aδij ,

a = ε
πq2

8δ

{
1

2

(
L2 lnL− a2

c ln ac
)
−

1

4

(
L2 − a2

c

)}
+ Ca,

(32)

where δij is the 2D unit matrix, εij is the antisymmetric
tensor, and the different constants C are the contribu-
tions from the inner region of the vortex. We see that in
every odd-order of (14) a symmetric damping matrix is
combined with an antisymmetric normal (non-damping)
matrix, and vice versa for the even orders. Moreover the
size dependence of the nth order damping components
is the same as that of the (n+ 1)th order normal compo-
nents. The first-order damping elements (30) were already
evaluated in [6] and [10].

For the solution of the equation of motion (14) we pro-
ceed as in reference [11]: we consider small displacements x
from a mean trajectory X0, on which the vortex is driven
by F

X(t) = X0(t) + x(t). (33)
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Fig. 1. Sketch of the vortex motion as governed by the Landau-
Lifshitz equation with Gilbert damping. The plot is approxi-
mate and does not correspond to an actual simulation.

We will denote the components of x by x1 and x2, with
the caveat that they should not be confused with the com-
ponents of r in equations (21) through (26). In view of our
simulations, we consider the situation where the force is
always pointing in the X1-direction and expand to first-
order around X1(0) = R0 (this is justified because in our
simulations F0, and even more F ′0, is very small), i.e.,

F = F0 + F ′0x1. (34)

For X0
i (t) we obtain two coupled linear third-order equa-

tions. Taking initial conditions X0
1 (0) = R0, X0

2 (0) = 0
the solutions are

X0
1 = R0 +

F0

F ′0
[exp(t/τ)− 1], (35)

X0
2 =

G

g

F0

F ′0
[exp(t/τ)− 1], (36)

where τ is determined by a cubic equation. The mean
trajectory is a straight line X0

2 = G/g(X0
1 − R0), which

slightly deviates from the X2-axis. The angle g/G is small
because g ∼ ε, where we choose small damping constants
ε in the simulations. As τ is of the order of G2/(gF ′0) it is
very large, in fact much larger than our integration times.
Therefore one can expand (35) and one get a constant

velocity on the mean trajectory: Ẋ0
1 = gF0/G

2, Ẋ0
2 =

F0/G.
The motion around the mean trajectory is obtained

by solving the two coupled linear third-order equations
for the displacements x(t) using the Ansatz

xi = x0
i exp[−(β − iω)t]. (37)

We find

β − iω =
±iM +m

2(A± ia)

±

√
(±iM +m)2 − 4(A± ia)(G± ig)

2(A± ia)
, (38)

with amplitude ratios κ = x0
2/x

0
1 = ±1 and phase differ-

ences ±π/2, where we have set F ′0 = 0 for simplicity. With
F ′0 6= 0 equation (38) becomes even more complicated and
|κ| 6= 1. The separation of real and imaginary parts leads
to cumbersome formulas. Therefore we compute the fre-
quencies ω1,2 and the relaxation constants β1,2 as a func-
tion of the parameters ε and L; we choose q = p = 1 for the
charges and δ = 0.1 for the anisotropy. The ac-dependent
parts in (28–31) can be combined with the constants CM
etc.; the combined constants can be neglected for large
systems. As for the frequencies, ω1,2 turn out to be very
close to each other; hence, the important parameters will
instead be their mean and difference. Examples of their
numerical values for a system of radius L = 24 are

ωc =
√
ω1ω2 ≈ 0.05, ∆ω = ω2 − ω1 ≈ 0.01, (39)

for a wide range of damping values (up to ε = 0.1 with L =
24), whereas for fixed ε the frequencies decrease with 1/L
up to rather large systems (L = 3 000 with ε = 2× 10−3).
Plots of ωc and ∆ω as a function of ε and L can be found
in [21] (note, however that the caption under Fig. 1 of [21]
must read 48 instead of 24).

In the simulations the purpose of the damping is to
dissipate the energy which is supplied to the system by the
noise. Therefore we must know the range of ε (for a given
system size) in which the frequencies are not influenced
by the damping. As shown in [21], this range is defined by
the condition

εL� 6. (40)

The relaxation constants β1,2 are nearly equal and the
mean value is βc = ε/5, and for the above range ωc and
∆ω are related to the parameters G, M , and A in a very
simple way [11]

ωc =

√
G

A
∼

1

L
, ∆ω =

M

A
∼

lnL

L2
· (41)

Finally we briefly discuss the shape of the trajectories.
We first consider the motion in a frame which is moving
along the mean trajectory X0(t): the general solutions for
the displacements xi(t) are linear superpositions of (37)
with ω1,2. Both xi(t) exhibit a very pronounced beat be-
cause ω1,2 are nearly equal. The orbits x1(x2) are Lis-
sajous curves, which can look very intricate for certain
parameter ranges. We go into the laboratory frame by
adding X0(t). Without the splitting of ω1,2 we would get
a cycloid. Due to the splitting we finally get a superpo-
sition of two cycloids, which are damped because of β1,2.
A cartoon of the vortex motion on a circular system is
sketched in Figure 1. Here the vortex is driven by an im-
age force which points in radial direction (see Sect. 4).
Without damping, the mean trajectory X0(t) would be
a circle, due to the gyrocoupling force. With damping,
the circle converts to an outward spiral. However, the ra-
dial motion is very exaggerated in the sketch, and the
same is true of the damping of the cycloidal oscillations
around the mean trajectory. The amplitude of these oscil-
lations in fact remains of the order of a lattice constant
for a long time.
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3 Finite temperature dynamics

3.1 Derivation of the vortex equation of motion

In order to study the finite temperature dynamics of vor-
tices, we must introduce thermal noise in the Landau-
Lifshitz equation with damping, equation (3). However, we
cannot simply add independent noise terms to these three
equations, because if we do so we do not arrive to some-
thing in the form of Langevin equations (all components of
dS/dt appear in each equation due to the cross-product).
Therefore we must first take all dS/dt-terms to the l.h.s.,
casting it explicitly into a first order equation, and only
then introduce the three white-noise terms η′α(r, t), yield-
ing:

dS

dt
=

1

1 + ε2S2

{
− S×

δH

δS
+ εS×

[
S×

δH

δS

]}
+ η′

(42)

with

〈η′α(r, t)〉 = 0, (43)

〈η′α(r, t)η′β(r′, t′)〉 = 2εkBTδ(r
′−r)δ(t′−t)δαβ , (44)

where α, β = 1, 2, 3. Now we take η′ to the l.h.s. and
undo the above procedure, i.e., we write (42) in the same

form as (3), but with Ṡ− η′ instead of Ṡ. We thus arrive
at

dS

dt
= −S×

δH

δS
− εS×

dS

dt
+ η (45)

with

η = η′ − ε(S× η′) . (46)

If we now compute the variances of η, we find that the
width of the distribution for the component parallel to the
spin vector is σ0 =

√
2εkBT , while the widths for the per-

pendicular components are σ0

√
1 + ε2S2. In the Langevin

dynamics simulation we will apply the constraint |S| = 1,
which means here that only the perpendicular components
are relevant. Thus we can replace η in (45) by η′ if we cor-

rect the widths by a factor of
√

1 + ε2. Taking into account
that in our simulations we will be using values of ε of the
order of 10−3 (see Sect. 4), we will neglect the correction
factor in the following.

As in the previous section, we calculate

S

(
∂S

∂Xi
× η

)
=

(
S×

∂S

∂Xi

)
η , (47)

integrate over r and combine this with the results of the
previous section; we have thus found the collective coor-
dinate equation in the presence of noise, namely

Â
...
X + M̂Ẍ + ĜẊ = F + Fst, (48)

where the stochastic force is given by

F sti =
1

S2

∫
d2r

(
S×

∂S

∂Xi

)
η(r, t). (49)

To achieve a complete understanding of the vortex dy-
namics as described by equation (48), we need to know
the mean 〈F sti 〉 and the variance Var(F sti ). We define

F sti =

∫
d2r f

(α)
i ηα, f

(α)
i =

1

S2
εαβγSβ

∂Sγ

∂Xi
(50)

where summation over repeated indices is implicitly un-
derstood. The mean is easily shown to be zero, whereas
for the correlation functions [22], from equation (44) we
obtain

〈F sti (t)F sti (t′)〉 = 2εkBTδ(t− t
′)

∫
d2rf

(α)
i (r)f

(α)
i (r) .

(51)

Instead of the Sα we introduce the fields φ and ψ in (12)
and thereby fulfill the constraint |S| = 1. After some al-
gebra we obtain

Var(F sti ) = 2εkBT

∫
d2r

{
(1− ψ2)

(
∂φ

∂Xi

)2

+
1

1− ψ2

(
∂ψ

∂Xi

)2
}
. (52)

We note that in this equation the leading contribution
comes from the static vortex structure, as given by equa-
tions (21, 24):

Var(F sti ) = 2πεkBT

L∫
0

dr r

{
1− ψ0(r)2

r2
+

(ψ′0(r))2

1− ψ0(r)2

}
.

(53)

As ψ0 decays exponentially, the second integral is inde-
pendent of L, while the first one grows logarithmically.
This suggests that, in order to approximately calculate
Var(F sti ), we can divide the integral in an outer part from
ac ≤ r ≤ L and a core part C(ac). By doing so we can
write

Var(F sti ) = 2εkBT · π

{
ln
L

ac
+ C(ac)

}
, (54)

which implies that the stochastic forces can be represented
as white noise on the level of the collective coordinates
with the properties 〈F sti 〉 = 0 and

〈F sti (t)F stj (t′)〉 = DV δijδ(t− t
′), (55)

where the effective vortex diffusion constant DV is deter-
mined by the r.h.s. of (54). We recall that the diffusion
constant D on the microscopic level, i.e., the one we will
use in the simulations, is D = 2εkBT .
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The core contribution C(ac) in the integral (53) cannot
be calculated accurately by using ψ0(r) from the contin-
uum limit [7]. Therefore, we have computed the full inte-
gral (53) using for ψ0 an ad-hoc function which was fitted
to the static vortex structure as obtained from the simula-
tions at zero temperature [21,24]. The results for L = 24
and δ = 0.03, 0.10, and 0.30 are DV /D = 10.02, 12.08,
and 14.18, respectively.

3.2 Solution of the equation of motion

We now turn to the solution of equation (48). As the force
F, which drives the vortex, can be expanded up to first or-
der around the mean trajectory as discussed in Section 2,
we find the linear equation

Â
...
x + M̂ẍ + Ĝẋ− fx = Fst (56)

with

f =

(
F ′0 0
0 0

)
. (57)

Thus we can use the Green’s function formalism to obtain
a formal solution. This proceeds in two steps. First, the
Green’s function matrix is obtained from the solution to
the equations

Â
...
g i + M̂g̈i + Ĝġi − fgi = δ(t)Ii, (58)

where gi, with i = 1, 2, are the two columns of the Green’s
function matrix, Ii are the corresponding columns of the
identity matrix, and suitable conditions have to be im-
posed on both equations (58). Once the Green’s matrix
G has been calculated, the second step is to solve the
stochastic problem (56). Its solution is then exactly given
by

x(t) = xh(t) +

∫ t

0

dsG(t− s) Fst(s), (59)

where xh(t) stands for the solution of the homoge-
neous version of equation (56). We note that G should
not be confused with the gyrocoupling tensor in
equations (7, 9, 27).

Let us now discuss the first part of the calculation, i.e.,
the computation of the Green’s matrix G. Equations (58)
above need to be supplemented with the following condi-
tions: G, Ġ, and G̈ vanish for t ≤ 0, and

G(0+) = Ġ(0+) =

(
0 0
0 0

)
, (60)

G̈(0+) = Â−1 =
1

a2 +A2

(
a −A
A a

)
. (61)

In order to find the columns gi of the Green’s matrix, we
take the Ansatz

gi(t) =
6∑
k=1

c
(i)
k

(
ak
bk

)
exp(λkt) θ(t), (62)

where θ(t) is the Heaviside function, ak and bk form
the eigenvectors belonging to the eigenvalues λk of the
homogeneous problem, i.e., equation (58) with its r.h.s.

set to zero, and c
(i)
k are the unknown amplitudes in the

linear combination. The eigenvalues are already known
from the previous section: one is zero, one is 1/τ (see
below Eq. (36)), and the other four are given by equa-
tion (38). All that remains is to insert the Ansatz (62) in

equation (58) and find the values for c
(i)
k from the corre-

sponding system of algebraic equations. Their expression
is rather cumbersome and therefore we do not present it
here insofar as the derivation is straightforward.

Once the c
(i)
k and hence G are known, we can move

to the second part of the procedure, namely to find the
trajectory and to evaluate its relevant moments. It is ev-
ident from equation (59) that the mean trajectory will
be exactly the same as that of the deterministic case, be-
cause the average of the integral of Fst vanishes. We will
therefore concentrate on the variances,

σ2
ij(t) = 〈xixj〉 − 〈xi〉〈xj〉. (63)

Using the expression (59) it can immediately be seen that

σ2
ij(t) =

2∑
k=1

∫ t

0

dt′DVGik(t− t′)Gjk(t− t′), (64)

where Gij stand for the elements of the Green’s matrix.
Once again, the calculation is simple but tedious, due to
the many terms involved by the product of the Green’s
matrix elements. Aside from this, the expression is easily
obtained as the integrals involve only exponentials. As an
example, we present a summary of the calculation of σ2

11,
which is the simplest element of the variance matrix. Nev-
ertheless, in order to facilitate the presentation and the
subsequent discussion we have made the following simpli-
fications: (i) ω1 = ω2 = ωc and β1 = β2 = βc, because
the splittings are very small (see Eq. (41) and above); (ii)
ω2
c + β2

c ' ω
2
c because βc = ε/8 and ε = 0.002 in the sim-

ulations, implying βc is two orders of magnitude smaller
than ωc as given by equation (39); (iii) A2 + a2 ' A2,
because a/A = O(ε), see equations (29, 32), and (iv) ex-
ponential terms involving t/τ are expanded to first order,
because τ is much larger than our integration times; see
below equation (36). Within these approximations, it can
be shown that

σ2
11(t) =

DV

A2ω4
c

[
t+

1

4βc
(1− e−2βct)

−
2

ωc
e−βct sinωct+

1

4ωc
e−2βct sin 2ωct

]
. (65)

For small times, t� 1/βc, we are left with an expression
which implies linear behavior plus oscillations, given by

σ2
11(t) =

DV t

A2ω4
c

(
3

2
− 2

sinωct

ωct
+

sin 2ωct

4ωct

)
. (66)
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We note that this function increases monotonously and
that it has no extrema but only inflection points. For large
times, t � 1/βc, only the first term of equation (65) re-
mains, and the variance becomes a straight line,

σ2
11(t) =

DV t

A2ω4
c

=
DV

G2
t, (67)

where equation (41) has been taken into account. Inter-
estingly, this result is identical to the one obtained by
omitting the second- and third-order terms in the vor-
tex equation of motion (48). We thus conclude that these
terms have two effects: first, they produce the oscillatory
parts in equation (65) (note that they are naturally con-
nected to the cycloidal vortex trajectories), and second,
for small times the slope of σ2

11 in equation (66), averaged
over the oscillations, is larger by a factor of 3/2 compared
to equation (67).

We do not present here the other elements of the vari-
ance matrix because they contain even more terms than
equation (65). Instead, we simply record the expression
for their long time behavior, which is

σ2
12 =

DV

G2

F ′0
2G

t2, (68)

σ2
22 =

DV

G2

[
t+

1

3

(
F ′0
G

)2

t3

]
. (69)

The quadratic and cubic terms in t appear in addition to
the standard random walk result which is proportional
to t. These additional terms arise because we have al-
lowed that the driving force F depends on the vortex posi-
tion, see equation (34). We have considered a force in the
X1 direction which drives the vortex in the X2 direction,
due to the gyrocoupling force GV × Ẋ in equation (2)

or GẊ in equation (7), respectively. Therefore, only the
2-components of σ2 are affected, σ2

12 acquiring a factor
(F ′0/G) t, σ22 acquiring it twice.

4 Langevin dynamics simulations

4.1 Numerical procedure

We begin with one vortex with its center located at a dis-
tance R0 from the middle of a circularly shaped square
lattice with a radius of L lattice constants. We use free
boundary conditions to get an image antivortex which
leads to a radial force on our vortex (see [11,26] and be-
low). The initial spin configuration stems from an itera-
tive program which produces a discrete vortex structure
on the lattice [24]. In this way we avoid the radiation of
spin waves which would appear during the early time units
if we use a continuum approximation for the vortex shape.
The parameter ranges must be chosen very carefully for
the following reasons: (i) we want that the vortex moves
smoothly over the Peierls-Nabarro potential of the lattice;
hence, the diameter 2rv of the out-of-plane structure must

be considerably larger than the lattice constant. Setting
δ = 0.1 we find 2rv ' 3 from equation (19); (ii) we choose
a system radius L = 24 which provides enough space: the
vortex moves outwards roughly on a spiral, but even for
very long integration times the out-of-plane vortex struc-
ture should not contact the boundary, and (iii) for the
same reason the initial distance R0 from the middle of
the circle should not be too large. On the other hand,
R0 should not be too small; otherwise the driving force F
would not be strong enough to overcome the pinning forces
of the lattice. Letting R0 = 10 both conditions can be si-
multaneously fulfilled, if the damping ε is small enough
(the larger ε, the sooner the vortex reaches the bound-
ary). Note however that a small ε means long saturation
times (see below).

For the time integration of the Landau-Lifshitz equa-
tion we use the discrete version of (42) where dS/dt has
already been isolated on the l.h.s. In contrast to our ana-
lytical calculations we work here with the Cartesian com-
ponents Sα. Therefore we explicitly take into account the
constraint S2 = 1 by adding S times a Lagrange parameter
λ to (42), see reference [25]. We form the time derivative
of the constraint, eliminate λ and get

d

dt
S = U +

SU

S2
S (70)

with

U =
1

1 + ε2S2

(
−S×

δH

δS
+ εS×

[
S×

δH

δS

])
+ η′ ,

(71)

where the site index has been omitted. We note that (70)

is the same as orthogonalizing Ṡ and U by the Gram-
Schmidt method. For the time integrations we use the
same code as in [11]. In addition, the position of the vortex
center, in particular the position within a lattice cell, is
determined by a procedure also discussed in [11].

To find a proper damping constant we checked the time
dependence of the system energy using different damping
constants for L = 24 and T = 0.02. The energy at t = 0 is
the same as for T = 0 and ε = 0 because the noise will be
introduced with the first time step of the simulation. The
energy then rises and saturates on a value independent of
ε, but for ε > 8 × 10−3 the energy decreases slowly after
saturation. The saturation time gets longer with lower ε,
for ε ≥ 2 × 10−3 we achieve acceptable saturation times
< 300 (in units of ~/(JS)). We have always made a pre-
run of length t0 > 300 prior to beginning the evaluation
of the simulation data.

The difference between the energy without tempera-
ture and the saturation energy with temperature must be
the thermal energy. We computed the mean thermal en-
ergy per spin at several temperatures and it agreed with
f/2× kBT up to T = 0.9, f being the number of degrees
of freedom per spin. For higher temperatures we find too
low values for the energy. We believe that the numerical
procedure would have to be improved if we were interested
in this regime.
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4.2 Vortex trajectory

We studied the trajectory of the vortex center at different
temperatures keeping L = 24 and ε = 2× 10−3 fixed. We
can distinguish three temperature regimes in which the
trajectories differ qualitatively.

For 0 ≤ T < T3 ≈ 0.05 we observe two frequencies in
the oscillations around the mean trajectory which can be
identified with the cycloidal frequencies ω1,2 in (38). The
intensities of the Fourier peaks at ω1,2 decrease with tem-
perature and vanish at T3 in the background, but ω1,2 are
constant in the whole regime. This means that here the
third order equation of motion (48) with temperature in-
dependent parameters can describe the vortex dynamics.
For one temperature of this regime we plot in Figure 2
the average radial coordinate R(t) and the azimuthal dis-
placement ϕ(t) = φ(t) − ω0t. We want to stress that the
plots present averaged results: for the computations of the
vortex trajectories and variances we have averaged over
100 different runs starting from the same initial config-
uration, which is defined as the final configuration after
a pre-run of length t0 = 1250. In the expression for ϕ(t)
above, ω0 = F0/(GR0) is the frequency of the rotation on
the mean trajectory which is essentially a circle where the
radius R0 grows very slowly with rate gF0/G

2 due to the
damping. On the mean trajectory the vortex is driven by a
radial force F0 due to the image vortex at R(i) = L2/R0,
which has opposite vorticity but the same polarization
[26]. As the average motion is very slow (ω0 ≈ 2.5×10−3)
we can actually work in a Cartesian system and use the
results (33–38). Here the X1-axis points in the radial di-
rection, and the X2-axis in the azimuthal direction [27].
The lowest panel of Figure 2 shows the Fourier spectrum
of R(t). In addition to ω1,2 one also observes the differ-
ence ∆ω = ω2 − ω1. This can be explained by working
in polar coordinates, which is not discussed here because
the formulas become much too cumbersome. The peaks at
higher frequencies are second harmonics of ω1,2.

For T3 < T < T1 ≈ 0.3 we do not observe the above
mentioned two frequencies any longer. In this regime, we
found that some runs had to be excluded from the av-
erage because the vortex suddenly changed its direction
of motion. This occurs because, opposite to the case of
the vorticity q, the polarization p of the vortex is not a
constant of motion for a discrete system: the out-of-plane
vortex structure can flip to the other side of the lattice
plane due to the stochastic forces acting on the spins. Then
G = 2πqp in equation (27) changes sign and thus the di-
rection of the gyrovector in equation (2) is reversed, which
implies that the direction of the vortex motion is reversed
as well. This noise-induced switching between the two vor-
tex polarizations is a very novel effect in itself, and hence
we are developing a theory for the switching rate [28]. In
this respect, it can be mentioned that switching can also
be induced by an ac magnetic field in the easy plane. As
the symmetry is broken here, such a switching occurs only
for one sense of rotation, and there is no transition back
to the original state [29].

Finally, for T > T1, a single-vortex theory as presented
here is no longer adequate because at these temperatures
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Fig. 2. Average trajectory of a vortex for temperature T =
0.03, damping ε = 0.002, system radius L = 24 and an ensem-
ble of 100 realizations. Upper panel: radial coordinate of the
vortex center vs. time. Middle panel: azimuthal displacement
ϕ = φ(t)− ω0t, where ω0 is the angular velocity on the mean
trajectory of radius R0. Lower panel: Fourier spectrum of R(t)
in the upper panel. The spectrum of ϕ(t) is very similar.

the probability for the spontaneous appearance of vortex-
antivortex pairs becomes too large. These pairs can break
up above the Kosterlitz-Thouless transition temperature
TKT ' 0.7 in our units. Between T1 and TKT , these
pairs interact with the initial vortex although they are not
separated, thus introducing new forces and effects which
the present theory does not take into account. Moreover,
very recent Monte-Carlo simulations [30–32] have revealed
that for higher temperatures the vortex motion is strongly
influenced by creation and annihilation processes: typi-
cally, an unbound vortex travels only one or a few lattice
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Fig. 3. Variances of the vortex trajectory; parameters are
the same of Figure 2. From top to bottom, shown are the
variance of the radial coordinate, σ2

RR = 〈R2〉 − 〈R〉2, σ2
Rφ,

the off-diagonal elements of the variance matrix, and σ2
φφ =

〈(R0ϕ)2〉 − 〈(R0ϕ)〉2. In all three cases the lower line is the
theoretical prediction without adjustment of parameters.

spacings until it annihilates with the antivortex of a pair
which meanwhile appeared spontaneously in the neighbor-
hood. Then, the vortex of this pair continues the travel
instead of the original vortex.

4.3 Variances of the vortex trajectories

As the vortex positions in the simulations are evaluated
in polar coordinates, we obtain a variance matrix with
elements σ2

RR, σ2
Rφ and σ2

φφ. Their time evolution is plot-
ted in Figure 3 for T = 0.03, which is close to the upper

edge of the low temperature regime defined in the previ-
ous subsection. The solid lines are the theoretical results
from Section 3, without the simplifications (i)–(iv) dis-
cussed above equation (65), which were only made there
to facilitate the discussion. As the theory has been worked
out in Cartesian coordinates, the following factors appear
when going over to polar coordinates: no factor in σ2

RR, a
factor κ = 1−F0/(F

′
0R0) in σ2

Rφ, and a factor κ2 in front

of the terms cubic in time in σ2
φφ.

Figure 3 shows that, for not too long times, the agree-
ment between theory and simulation is astonishingly good;
it is important to stress that no parameters were adjusted
at all. Moreover, we worked in the continuum limit, while
the simulations were performed on a discrete system. For
very long times, t ≥ 2 000, the agreement becomes poorer.
This is partially due to one simplification of the theory,
namely that we have used a constant R0 although during
the simulation R0 slowly increases by several lattice con-
stants as the trajectory is roughly a spiral (see the cartoon
in Fig. 1). The force term F ′0 = F ′(R0) increases as well,
because the force increases when the distance to the image
vortex becomes smaller. As F ′0 appears in σ2

Rφ and (F ′0)2

arises in front of the cubic term in σ2
φφ in equations (68,

69), including this effect would lead to an improvement of
the agreement between theory and simulations.

Aside from those discussed above, there is another pos-
sible reason for the discrepancy between theory and sim-
ulation whose consideration, unfortunately, would lead to
very involved calculations: the integral (52) for DV (as
well as the integrals in Sect. 2 except (9)) have been eval-
uated by placing the vortex into the middle of the circular
system. However, in the simulations the distance from the
lattice center is R0, which moreover increases slowly. We
have estimated the above integrals by expanding in R0/L,
which shows that the first order terms vanish. Neverthe-
less, the second order terms yield corrections which are al-
ready of the order of 20% for R0 = 10, becoming larger as
R0 increases. Even more, the variance (54) of the stochas-
tic forces is actually a diagonal tensor, see equation (51)

and [21]. Therefore, we get a radial diffusion constantD
(R)
V

which differs from the azimuthal constant D
(φ)
V when the

vortex is not at the center. This splitting is also of order

(R0/L)2. As D
(φ)
V appears, e.g., in front of the cubic term

in σ2
φφ, whereas the linear term contains D

(R)
V , it is quite

possible that the agreement with the simulations could
be improved by taking into account the splitting of the
diagonal elements of the diffusion tensor.

We numerically integrated up to times t = 4 000 (let us
point out in this regard that this takes three weeks CPU
time on a CRAY-YMP/EL for averages over 100 runs) be-
cause this is the characteristic time given by 1/βc = 8/ε
for the damping in the trajectories. We should see then
that the slope of the time-averaged function σ2

RR gradually
decreases, eventually by a factor one third for t � 1/βc
(cf. the discussion of Eq. (65)]. We checked this for the
theoretical results in Figure 3, and found that in the sim-
ulation data this effect can be observed only qualitatively.
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For σ2
Rφ and σ2

φφ the effect is hidden by the quadratic and
cubic terms.

We would like to stress that the strong fluctuations
in Figure 3 (which seem to be smaller in the two lower
plots because of the different scales) arise not only due to
the noise but also from discreteness effects. This is demon-
strated very clearly by the simulation in Figure 4 for a very
low temperature (T = 0.003) using 1 500 realizations. We
have identified the sharp spikes as discreteness effects by
comparing with the times when the vortex center moves
over the ridges along the lattice lines (these times are indi-
cated as dashed vertical lines). The vortex energy is high-
est when the center is at a lattice point, and lowest in the
middle of a cell.

Last, but not least, we discuss the temperature depen-
dence of the vortex diffusion constant DV . A linear depen-
dence is predicted by equations (53, 54). For comparison
with the simulations we have fitted the theoretical curves
to the observed variances by adjusting DV , which appears
as a factor in front of all the components of σ2. This was
done for two temperature decades. Figure 5 shows a nearly
linear dependence, and therefore the only difference be-
tween DV from the simulations and the theoretical DV is
a constant factor of about 1.8 for the whole temperature
regime.

5 Conclusions

In this paper, we have reported our analytical and numer-
ical work regarding the effects of temperature on the dy-
namics of non-planar vortices in 2D, classical, anisotropic
Heisenberg ferromagnets. As a preliminary result, we have
described the zero temperature dynamics of vortices in the
presence of Gilbert damping. We found that damping con-
tributes to all the terms of the third order equation of mo-
tion for the vortex position, but its contribution is always
an order smaller in the system size than the correspond-
ing free propagation part. We have solved the equations
of motion and qualitatively discussed the motion of the

0 001 0 010
T

0 01

0 10

1 00

D
V

Fig. 5. Vortex diffusion constant DV as a function of temper-
ature, for ε = 0.002 and L = 24. Solid line: theoretical results
from equation (53); dashed line: adjusted DV from fitting the
theoretical curves for σ2(t) to the simulation data.

vortex, which consists of a mean straight trajectory plus
(damped) additional oscillations. By means of the same
analytical approach, we have been able to derive a third
order stochastic equation of motion for the vortex center
when thermal noise is added to the system. The equation
shows that the effective stochastic force acting on the vor-
tex is also a Gaussian white noise, whose variance depends
linearly on the temperature. We have exactly solved the
stochastic equation of motion and obtained analytical ex-
pressions for the mean vortex trajectory and its variance.
The variance along the coordinate perpendicular to the
direction of motion of the vortex is diffusive, i.e., it in-
creases linearly with time; however, other components of
the variance matrix (the parallel-perpendicular and the
parallel-parallel terms) turn out to include nonlinear con-
tributions coming from the fact that the vortex motion is
perpendicular to the driving force, due to a Lorentz-like
gyrocoupling force.

The above summarized analytical results, obtained in
the continuum limit of the Landau-Lifshitz equations gov-
erning the model dynamics, have been compared to Lan-
gevin dynamic simulations of the discrete 2D Heisenberg
model. The numerical results allow us to establish three
different temperature regimes for the vortex propagation:
a low temperature one, where the vortex motion follows
essentially the third order equation of motion with pa-
rameters independent of temperature; a middle tempera-
ture one, at which traces of the oscillations arising from
the third order equation are lost, and a high temperature
regime, which is not describable by a one-vortex approach
because too many vortex-antivortex pairs arise in the sys-
tem. Our analytical results are seen to be a good descrip-
tion of the vortex dynamics up to temperatures of the
order of 10% of the Kosterlitz-Thouless transition tem-
perature. Remarkably, the analytical predictions, which
include no adjustable parameters, agree qualitatively well
with the numerical simulations, and even quantitatively
at early times. The agreement becomes worse for longer
times due to the approximations involved in our theory:
the calculations were made for a constant radius of the
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trajectory and a constant force F gradient, aside from sim-
plifications necessary to calculate the integrals which give
the parameters for the equation of motion. In addition, we
have been able to clearly identify the influence of discrete-
ness in the numerical results, which cannot be captured by
our continuum theory. Finally, we have also verified that
the vortex diffusion constant depends linearly on temper-
ature as predicted, although the quantitative comparison
is not correct by a factor two. We thus conclude that the
collective coordinate theory we have derived for vortex dy-
namics is a good description of the phenomena observed
numerically at low and intermediate temperatures. The
discrepancies between theory and simulations have been
understood in terms of the unavoidable approximations
involved in the calculations. Finally, we note that for vor-
tices quantum effects are possibly more important than
for kinks in one-dimensional spin models, where at least a
part of these effects can be taken into account by a renor-
malization of the kink parameters. For 2D spin models, it
is not clear how a quantum vortex should be defined. In
any case, a finite lifetime and other novel features seem to
appear [33].
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