89 research outputs found

    Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems-setting the record straight

    Get PDF
    Vegetated coastal ecosystems, including tidal marshes, mangroves and seagrass meadows, are being increasingly assessed in terms of their potential for carbon dioxide sequestration worldwide. However, there is a paucity of studies that have effectively estimated the accumulation rates of sediment organic carbon (Corg), also termed blue carbon, beyond the mere quantification of Corg stocks. Here, we discuss the use of the 210Pb dating technique to determine the rate of Corg accumulation in these habitats. We review the most widely used 210Pb dating models to assess their limitations in these ecosystems, often composed of heterogeneous sediments with varying inputs of organic material, that are disturbed by natural and anthropogenic processes resulting in sediment mixing and changes in sedimentation rates or erosion. Through a range of simulations, we consider the most relevant processes that impact the 210Pb records in vegetated coastal ecosystems and evaluate how anomalies in 210Pb specific activity profiles affect sediment and Corg accumulation rates. Our results show that the discrepancy in sediment and derived Corg accumulation rates between anomalous and ideal 210Pb profiles is within 20% if the process causing such anomalies is well understood. While these discrepancies might be acceptable for the determination of mean sediment and Corg accumulation rates over the last century, they may not always provide a reliable geochronology or historical reconstruction. Reliable estimates of Corg accumulation rates might be difficult at sites with slow sedimentation, intense mixing and/or that are affected by multiple sedimentary processes. Additional tracers or geochemical, ecological or historical data need to be used to validate the 210Pbderived results. The framework provided in this study can be instrumental in reducing the uncertainties associated with estimates of Corg accumulation rates in vegetated coastal sediments.This work was funded by the CSIRO Flagship Marine & Coastal Carbon Biogeochemical Cluster (Coastal Carbon Cluster), the Spanish Ministry of Economy and Competitiveness (projects EstresX CTM2012-32603, MedShift CGL2015-71809-P), the Generalitat de Catalunya (MERS 2017 SGR – 1588), the Australian Research Council LIEF Project (LE170100219), the Edith Cowan University Faculty Research Grant Scheme and the King Abdullah University of Science and Technology (KAUST) through baseline funding to Carlos M. Duarte. This work contributes to the ICTA Unit of Excellence (MinECo, MDM2015-0552

    Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Full text link
    The Chern-Simons lagrangian density in the space of metrics of a 3-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.Comment: 13 page

    Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics

    Get PDF
    Sinking vast amounts of seaweed in the deep ocean is currently being proposed as a promising ocean carbon dioxide removal strategy as well as a natural-based solution to mitigate climate change. Still, marketable carbon offsets through large-scale seaweed sinking in the deep ocean lack documentation and could involve unintended environmental and social consequences. Managing the risks requires a number of urgent actions

    Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MSinking vast amounts of seaweed in the deep ocean is currently being proposed as a promising ocean carbon dioxide removal strategy as well as a natural-based solution to mitigate climate change. Still, marketable carbon offsets through large-scale seaweed sinking in the deep ocean lack documentation and could involve unintended environmental and social consequences. Managing the risks requires a number of urgent actions

    Natural and Fukushima-derived radioactivity in macroalgae and mussels along the Japanese shoreline

    Get PDF
    Following the failure of the nuclear power plant in Fukushima Prefecture in March 2011, peer-reviewed publications describing radioactivity levels in organisms inhabiting coastal environments are scarce. This paper reports on elevated levels of 134Cs and 137Cs in macroalgae and mussels (up to ~ 800 Bq kg−1 dry wt.) in June 2011. Cs concentrations in biota sampled in early June 2011 were higher in areas south of Fukushima than sampled in the last third of the month north of Fukushima. Activity concentrations from 134+137Cs in organisms south of Fukushima were comparable to or lower than those from the naturally occurring 40K in the same samples. While 210Pb and 210Po concentrations were generally lower than these other radionuclides, 210Po as an α-emitter is more significant from a radiological viewpoint than γ-emitters as it can inflict greater biological damage. By applying known bioconcentration factors of Cs in biota, measured biota concentrations of Cs were also used to estimate Cs concentrations in coastal seawater to be in the range of 102–103 Bq m−3. These estimates show that, 3 months after the accident and maximal release of radioactive Cs, levels of Cs persisted in coastal waters, although at levels that were two orders of magnitude lower than at the time of release. These June coastal seawater Cs levels were four orders of magnitude above Cs concentrations off Japan prior to the Fukushima disaster

    Sediment accumulation and carbon burial in four hadal trench systems

    Get PDF
    Hadal trenches are considered to act as depocenters for organic material, although pathways for the material transport and deposition rates are poorly constrained. Here we assess focusing, deposition and accumulation of material and organic carbon in four hadal trench systems underlying different surface ocean productivities; the eutrophic Atacama and Kuril-Kamchatka trenches, the mesotrophic Kermadec trench and the oligotrophic Mariana Trench. The study is based on the distributions of naturally occurring 210Pbex, 137Cs and total organic carbon from recovered sediment cores and by applying previously quantified benthic mineralization rates. Periods of steady deposition and discreet mass-wasting deposits were identified from the profiles and the latter were associated with historic recorded seismic events in the respective regions. During periods without mass wasting, the estimated focusing factors along trench axes were elevated, suggesting more or less continuous downslope focusing of material toward the interior of the trenches. The estimated organic carbon deposition rates during these periods exhibited extensive site-specific variability, but were generally similar to values encountered at much shallower settings such as continental slopes and margins. Organic carbon deposition rates during periods of steady deposition were not mirrored by surface ocean productivity, but appeared confounded by local bathymetry. The inclusion of deposition mediated by mass-wasting events enhanced the sediment and organic carbon accumulations for the past ∼ 150 years by up to a factor of ∼ 4. Thus, due to intensified downslope material focusing and infrequent mass-wasting events, hadal trenches are important sites for deposition and sequestration of organic carbon in the deep sea

    Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1309–1332, doi:10.1002/2015GB005134.Summertime carbon, nitrogen, and biogenic silica export was examined using 234Th:238U disequilibria combined with free floating sediment traps and fine scale water column sampling with in situ pumps (ISP) within the Eastern Tropical North Pacific and the Gulf of California. Fine scale ISP sampling provides evidence that in this system, particulate carbon (PC) and particulate nitrogen (PN) concentrations were more rapidly attenuated relative to 234Th activities in small particles compared to large particles, converging to 1–5 µmol dpm−1 by 100 m. Comparison of elemental particle composition, coupled with particle size distribution analysis, suggests that small particles are major contributors to particle flux. While absolute PC and PN export rates were dependent on the method used to obtain the element/234Th ratio, regional trends were consistent across measurement techniques. The highest C fixation rates were associated with diatom-dominated surface waters. Yet, the highest export efficiencies occurred in picoplankton-dominated surface waters, where relative concentrations of diazotrophs were also elevated. Our results add to the increasing body of literature that picoplankton- and diazotroph-dominated food webs in subtropical regions can be characterized by enhanced export efficiencies relative to food webs dominated by larger phytoplankton, e.g., diatoms, in low productivity pico/nanoplankton-dominated regions, where small particles are major contributors to particle export. Findings from this region are compared globally and provide insights into the efficiency of downward particle transport of carbon and associated nutrients in a warmer ocean where picoplankton and diazotrophs may dominate. Therefore, we argue the necessity of collecting multiple particle sizes used to convert 234Th fluxes into carbon or other elemental fluxes, including <50 µm, since they can play an important role in vertical fluxes, especially in oligotrophic environments. Our results further underscore the necessity of using multiple techniques to quantify particle flux given the uncertainties associated with each collection method.NSF Grant Numbers: OCE-0726290, OCF-0962362, OCE-0726543, OCE-0726422; EU Grant Number: FP7-MC-IIF-220485; MEC Grant Number: CTM2007-31241-E/MAR; ICREA Academia; MERS Grant Number: 2014 SGR – 1356; Spain's Ministerio de Educación y Ciencia Grant Numbers: AP-2009-4733, BES-2004-3348; NASA New Investigator Award Grant Number: NNX10AQ81G; Sloan Research Fellowship2016-02-2

    Small Phytoplankton Drive High Summertime Carbonand Nutrient Export in the Gulf of California and Eastern Tropical North Pacific

    Get PDF
    Summertime carbon, nitrogen, and biogenic silica export was examined using 234Th:238U disequilibria combined with free floating sediment traps and fine scale water column sampling with in situ pumps (ISP) within the Eastern Tropical North Pacific and the Gulf of California. Fine scale ISP sampling provides evidence that in this system, particulate carbon (PC) and particulate nitrogen (PN) concentrations were more rapidly attenuated relative to 234Th activities in small particles compared to large particles, converging to 1–5 µmol dpm−1 by 100 m. Comparison of elemental particle composition, coupled with particle size distribution analysis, suggests that small particles are major contributors to particle flux. While absolute PC and PN export rates were dependent on the method used to obtain the element/234Th ratio, regional trends were consistent across measurement techniques. The highest C fixation rates were associated with diatom‐dominated surface waters. Yet, the highest export efficiencies occurred in picoplankton‐dominated surface waters, where relative concentrations of diazotrophs were also elevated. Our results add to the increasing body of literature that picoplankton‐ and diazotroph‐dominated food webs in subtropical regions can be characterized by enhanced export efficiencies relative to food webs dominated by larger phytoplankton, e.g., diatoms, in low productivity pico/nanoplankton‐dominated regions, where small particles are major contributors to particle export. Findings from this region are compared globally and provide insights into the efficiency of downward particle transport of carbon and associated nutrients in a warmer ocean where picoplankton and diazotrophs may dominate. Therefore, we argue the necessity of collecting multiple particle sizes used to convert 234Th fluxes into carbon or other elemental fluxes, including \u3c50 \u3eµm, since they can play an important role in vertical fluxes, especially in oligotrophic environments. Our results further underscore the necessity of using multiple techniques to quantify particle flux given the uncertainties associated with each collection method

    Fluxes of the 238U-series isotopes in the industrial production of dicalcium phosphate and the radiological impact due to the incorporation to poultry diets

    Get PDF
    La roca de fosfato se utiliza como fuente para la producción de suplementos alimenticios, como en forma de fosfato dicálcico (DCP), que es un suministro de calcio y fósforo para animales domésticos
    corecore