5,424 research outputs found

    Micrometeorological processes driving snow ablation in an Alpine catchment

    Get PDF
    Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.<br/

    A commutator description of the solvable radical of a finite group

    No full text
    We are looking for the smallest integer k>1 providing the following characterization of the solvable radical R(G) of any finite group G: R(G) coincides with the collection of all g such that for any k elements a_1,a_2,...,a_k the subgroup generated by the elements g, a_iga_i^{-1}, i=1,...,k, is solvable. We consider a similar problem of finding the smallest integer l>1 with the property that R(G) coincides with the collection of all g such that for any l elements b_1,b_2,...,b_l the subgroup generated by the commutators [g,b_i], i=1,...,l, is solvable. Conjecturally, k=l=3. We prove that both k and l are at most 7. In particular, this means that a finite group G is solvable if and only if in each conjugacy class of G every 8 elements generate a solvable subgroup

    The correction of the littlest Higgs model to the Higgs production process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H in e−γe^{-}\gamma collisions

    Full text link
    The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs(LH) model, we study the process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H and calculate the contributions of the LH model to the cross section of this process. The results show that, in most of parameter spaces preferred by the electroweak precision data, the value of the relative correction is larger than 10%. Such correction to the process e−γ→νeW−He^{-}\gamma\to \nu_{e}W^{-}H is large enough to be detected via e−γe^{-}\gamma collisions in the future high energy linear e+e−e^{+}e^{-} collider(LCLC) experiment with the c.m energy s\sqrt{s}=500 GeV and a yearly integrated luminosity £=100fb−1\pounds=100fb^{-1}, which will give an ideal way to test the model.Comment: 13 pages, 4 figure

    Monodromy of Cyclic Coverings of the Projective Line

    Full text link
    We show that the image of the pure braid group under the monodromy action on the homology of a cyclic covering of degree d of the projective line is an arithmetic group provided the number of branch points is sufficiently large compared to the degree.Comment: 47 pages (to appear in Inventiones Mathematicae

    The littlest Higgs model and Higgs boson associated production with top quark pair at high energy linear e+e−e^{+}e^{-} collider

    Full text link
    In the parameter space allowed by the electroweak precision measurement data, we consider the contributions of the new particles predicted by the littlest Higgs(LHLH) model to the Higgs boson associated production with top quark pair in the future high energy linear e+e−e^{+}e^{-} collider(ILCILC). We find that the contributions mainly come from the new gauge bosons ZHZ_{H} and BHB_{H}. For reasonable values of the free parameters, the absolute value of the relative correction parameter δσ/σSM\delta\sigma/\sigma^{SM} can be significanly large, which might be observed in the future ILCILC experiment with S=800GeV\sqrt{S}=800GeV.Comment: latex files, 13 pages, 3 figure

    Expansion in perfect groups

    Full text link
    Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an integer q, denote by Ga_q the subgroup of Ga consisting of the elements that project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q with respect to the generating set S form a family of expanders when q ranges over square-free integers with large prime divisors if and only if the connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas are explained in more details in the introduction, typos corrected, results and proofs unchange

    MW and sin^2\theta_eff in Split SUSY: present and future expectations

    Full text link
    We analyse the precision electroweak observables MW and sin^2\theta_eff and their correlations in the recently proposed Split SUSY model. We compare the results with the Standard Model and Minimal Supersymmetric Standard Model predictions, and with present and future experimental accuracies. Present experimental accuracies in (MW, sin^2\theta_eff) do not allow constraints to be placed on the Split SUSY parameter space. We find that the shifts in (MW, sin^2\theta_eff) induced by Split SUSY can be larger than the anticipated accuracy of the GigaZ option of the International Linear Collider, and that the most sensitive observable is sin^2\theta_eff. These large shifts are possible also for large chargino masses in scenarios with small tan(\beta) =~ 1.Comment: LaTeX, 13 pages, 4 figures. Comments adde

    Numerical Study of Length Spectra and Low-lying Eigenvalue Spectra of Compact Hyperbolic 3-manifolds

    Full text link
    In this paper, we numerically investigate the length spectra and the low-lying eigenvalue spectra of the Laplace-Beltrami operator for a large number of small compact(closed) hyperbolic (CH) 3-manifolds. The first non-zero eigenvalues have been successfully computed using the periodic orbit sum method, which are compared with various geometric quantities such as volume, diameter and length of the shortest periodic geodesic of the manifolds. The deviation of low-lying eigenvalue spectra of manifolds converging to a cusped hyperbolic manifold from the asymptotic distribution has been measured by ζ−\zeta- function and spectral distance.Comment: 19 pages, 18 EPS figures and 2 GIF figures (fig.10) Description of cusped manifolds in section 2 is correcte

    Higgs boson pair production process e+e−→ZHHe^+e^-\to ZHH in the littlest Higgs model at the ILC

    Full text link
    The physics prospect at future linear e+e−e^{+}e^{-} colliders for the study of the Higgs triple self-coupling via the process of e+e−→ZHHe^{+}e^{-}\to ZHH is investigated. In this paper, we calculate the contribution of the new particles predicted by the littlest Higgs model to the cross sections of this process in the future high energy e+e−e^{+}e^{-} collider(ILCILC). The results show that, in the favorable parameter spaces preferred by the electroweak precision, the deviation of the total cross sections from its SMSM value varies from a few percent to tens percent, which may be detected at the future ILCILC experiments with s\sqrt{s}=500GeV.Comment: 13 pages,4 figure

    The structure of glutamate transporters shows channel-like features

    Get PDF
    AbstractNeuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic organisms. The transporters consist of eight membrane-spanning Îą-helices and two pore-loop structures, which are unique among secondary transporters but may resemble pore-loops found in ion channels. Another distinctive structural feature is the presence of a highly amphipathic membrane-spanning Îą-helix that provides a hydrophilic path through the membrane. The unusual structural features of the transporters are discussed in relation to their function
    • …
    corecore