In this paper, we numerically investigate the length spectra and the
low-lying eigenvalue spectra of the Laplace-Beltrami operator for a large
number of small compact(closed) hyperbolic (CH) 3-manifolds. The first non-zero
eigenvalues have been successfully computed using the periodic orbit sum
method, which are compared with various geometric quantities such as volume,
diameter and length of the shortest periodic geodesic of the manifolds. The
deviation of low-lying eigenvalue spectra of manifolds converging to a cusped
hyperbolic manifold from the asymptotic distribution has been measured by
ζ− function and spectral distance.Comment: 19 pages, 18 EPS figures and 2 GIF figures (fig.10) Description of
cusped manifolds in section 2 is correcte