383 research outputs found

    Realization of logically labeled effective pure states for bulk quantum computation

    Full text link
    We report the first use of "logical labeling" to perform a quantum computation with a room-temperature bulk system. This method entails the selection of a subsystem which behaves as if it were at zero temperature - except for a decrease in signal strength - conditioned upon the state of the remaining system. No averaging over differently prepared molecules is required. In order to test this concept, we execute a quantum search algorithm in a subspace of two nuclear spins, labeled by a third spin, using solution nuclear magnetic resonance (NMR), and employing a novel choice of reference frame to uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and remove ambiguitie

    Schmidt balls around the identity

    Full text link
    Robustness measures as introduced by Vidal and Tarrach [PRA, 59, 141-155] quantify the extent to which entangled states remain entangled under mixing. Analogously, we introduce here the Schmidt robustness and the random Schmidt robustness. The latter notion is closely related to the construction of Schmidt balls around the identity. We analyse the situation for pure states and provide non-trivial upper and lower bounds. Upper bounds to the random Schmidt-2 robustness allow us to construct a particularly simple distillability criterion. We present two conjectures, the first one is related to the radius of inner balls around the identity in the convex set of Schmidt number n-states. We also conjecture a class of optimal Schmidt witnesses for pure states.Comment: 7 pages, 1 figur

    Experimental Realization of A Two Bit Phase Damping Quantum Code

    Full text link
    Using nuclear magnetic resonance techniques, we experimentally investigated the effects of applying a two bit phase error detection code to preserve quantum information in nuclear spin systems. Input states were stored with and without coding, and the resulting output states were compared with the originals and with each other. The theoretically expected result, net reduction of distortion and conditional error probabilities to second order, was indeed observed, despite imperfect coding operations which increased the error probabilities by approximately 5%. Systematic study of the deviations from the ideal behavior provided quantitative measures of different sources of error, and good agreement was found with a numerical model. Theoretical questions in quantum error correction in bulk nuclear spin systems including fidelity measures, signal strength and syndrome measurements are discussed.Comment: 21 pages, 17 figures, mypsfig2, revtex. Minor changes made to appear in PR

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Willing and able: action-state orientation and the relation between procedural justice and employee cooperation

    Get PDF
    Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    Meson-baryon coupling constants in two-flavor lattice QCD

    Get PDF
    We evaluate the pseudoscalar-meson coupling constants and the strangeness-conservingand the strangeness-changing axial charges of octet baryons in lattice QCD with two flavors ofdynamical quarks.We find that the coupling constants and the axial charges have rather weak quarkmassdependence and the breaking in SU(3)-flavor symmetry is small at each quark-mass point weconsider.Yukawa International Program for Quark-Hadron Sciences ; KAKENHIpost-prin
    • …
    corecore