Measuring Rotational Degrees
of Freedom Using a Laser
Doppler Vibrometer

. Many model updating and dynamic coupling techniques require the response of a

M. J. Ratcliffe structure to be defined at all degrees of freedom. Standard experimental techniques do not
routinely allow the measurement of rotational DoFs. Also time constraints do not permit

measurement over a dense grid. A laser system has been developed which enables

N. A. J. Lieven rotations to be extracted by a simple plane-fitting technique, which is described in this
paper. A finite element model-based parametric study is presented, which has shown that
Department of Aerospace Engineering, the performance of the technique is dependent on the amount of corruption present on
University of Bristol, translation data.
Bristol BS8 1TR, UK A semi-empirical technique is developed, using second derivatives to exacerbate

temporarily the noise corruption, which quantifies accurately the equivalent Gaussian
noise on the response data. An experimental study is also presented which shows the
considerable promise of these procedures. Finally, a brief description of a model updating
case study is presented for illustrative purposes.
Terminology

In order to avoid a verbose sentence construction, the coordinate at which it is desired
to measure the rotational frequency response functions (FRFs) is hereafter referred to as
the rotation point.In addition, the distance between the measured translation FRFs and
the rotation point is referred to as thmeasurement radius.

1 Introduction interfere constructively and destructively with the measurement

Current model updating routines [1-3] and FRF coupling tecR€aM: which has been reflected back by the structure. Changes in
niques [4] require that the response of a structure be defined att ﬁlntent;sllty cf)f the light C?]r.‘f be measulged ulsmg p%otode_tecltors, and
degrees of freedom (DoFs). Traditional techniques for experimeii!S €nables frequency shifts as small as 1 part in, Bgjuivalent

tal determination of responses are effective only for translationtéﬁ?ﬁofg\r;‘ per seﬁond, éo be r’geasu;ed. i . h
and a very limited subset of rotational DoFs. Practical consider- e generally produces data of a quality superior to other
gasurement devices—such as accelerometers—and does not suf-

ations tend to mean that the experimental response set is limi - . . >
r from mass-loading effects. However, in certain conditions,

only to the out-of-plane translations. Theoretical methods exi local noi . b d by d D
which attempt either to expand the experimental data sets qytreme local noise effects can be caused by drop-out. Drop-out

incorporate the extra DoFs [5], or to reduce the size of t}gcurs when there is very little laser beam signal reflected back to
finite-element model [6]. This paper presents a technique that uSag 'aser measurement system. Drop-out can be reduced by using
the simple expedient of fitting a plane in a least-squares Sens@t@trqreﬂec_tlve ”?ate“a' that W'" reflect back over a large arc, and
experimental translation data—which are measured in a cirdp@vailable in paint or adhesive-tape form; the present work uses
around the rotation point—to calculate the two out-of-plane rot&€troreflective tape to produce diffuse reflections.
tions.

3 Least-Squares Plane Fitting in Three Dimensions

2 Laser Doppler Anemometry Conventional least-squares fitting techniques involve analytical
A PC-based system to drive a Laser Doppler Velocimet&ifferentiation to minimise the squared difference between the

(LDV) has been developed specifically for the purposes of dg_esired line or plane and the noisy experimental data. Analytical

namic finite element model updating. This apparatus enabmsﬂgerentiation, although often trivial, cannot easily be performed
acquisition of FRF data with a much denser measurement grid tH3h @ computational algorithm, so the alternative approach shown

would normally be the case, because of its speed of operation; tRREOW is used. , ) ) ,
fact, together with the exceptional purity of data afforded by the 'N€ equation of a plane in three-dimensional space is:
state-pf-the-art LDV system, is essential to the workings of the z=Ax+By+C 1)
technique presented in this paper. The system can be programmed
to scan automatically through a geometry file, and therefore r&-andB are the gradients of the plane, which correspond to the
quires little interactive supervision. rotations that the method is designed to measure. The conStant,
Laser techniques work using the Doppler effect: when ligwhich is the point at which the plane crosses thaxis can be
contacts a moving surface, the frequency of the reflected beanrésoved by moving the origin of the space, using the fact that the
altered by an amount2A, wherea is the wavelength of the light, plane is sure to pass through the spatial centre of gravity of the
andv is the velocity of the surface. The laser beam is split into twdata, i.e.
parts, with one half arranged to fall on the structure at a single

point. The other half is used as a reference beam and is allowed to X=X —X
. . . . . T ?I = Yi -Y
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We want to find:
E %(AX +BY, - Zi)z‘min (3) o -

Differentiating with respect té\ to find the best gradient in the
® Shaker Attachment Point

Y-direction (in Z Direction)
2 (AS(i + BAYi - Zi)xi =0 4)
Differentiating with respect td@ to find the best gradient in the
X-direction
E (A% +BY, - Z)Y,=0 %)
These two expressions can be rearranged, using simple algebrd Y
form:
- ~ A o~ ~ A X
E Y,2 2 iZi - 2 iZi 2 XiYi
A= — S <3 (6) ‘
— 2 XY XY+ X XPRY 0200m  0.108m

2X|Z| 2X|Y|_2X| EYZ

i&i
B e T @)
)y XY )y XY — 2 X )y Yi Fig. 1 Case study FE model, showing dense node structure, and exper-
L . . imental shaker attachment point
This gives us a straight-forward method for extracting out-of-plane

rotations from translation data: simply measure translation FRFs at ) ) o
coordinates close to the rotation point. Once the plane has beedhe FRFs were generated by inverting the dynamic stiffness
fitted to the data, it is a simple matter to calculate the anguldtatrix, i.e.:
displacement. Clearly, the accuracy of the method is determined _ 2 -1
by the distance between the points where the translations are a(w) = (K] = o M]) (8)
measured. Conventional experimental techniques use too coargghare each individual FRF is given by a single element of the
grid to attain sufficient accuracy. Laser Doppler techniques, hoveceptance matrix. This method of producing the FRFs is more
ever, have the advantage of a very small measurement area, as w@ensive, both in terms of run-time and storage space required,
as providing the capability of measuring a structure using a mugiian regenerating them from a linear combination of modes, but it
finer grid because of their speed of operation. was chosen in order to guarantee no modal truncation took place
[4].
4 Finite Element Model Case Study Figure 2 shows the effects of increasing the distance and, as
. expected, there is significant variation in the FRF estimates as the
Intuitively, one would expect the accuracy of the plane f

hni d he further th i Wistance increases. The amount of variation is frequency dependent
technique to decrease the further the translation FRFs are away) clearly increases with frequency; this is to be expected since
from the rotation point because of the curvature of the dlspla@

h ifest in vibrat cal curvature is greater for higher order modes. Although the
ment shape. However, errors manifest in vibration test data Willterences are considerably more marked at higher frequencies,
degrade the performance of th? plane-fitting proqedure, and 8% order modes are more important for most modal analysis
effect of random noise errors wilhcreaseat small distances.

- . gplications. It is interesting to note that there appears to be a
An FE model case study was undertaken in order to quantify theaater improvement in the, rotation FRF (particularly close to
effects of noise corruption and the behaviour of the procedu

fti-resonances) than in tlerotation FRF. This is a case-specific
when the measurement radius is varied. The model chosen for th ) i1 P

. S froe-f | hich tvpif Vil ai nomenon that is explained later.
investigation was a free-free plate—which typified a civil aircraft giq, e 2 js difficult to interpret because there is no quantitative
wing—of uniform thickness and is shown in Fig. 1. It was antic

h . o measure of the error on the FRF curves. ThereforeNtrenalized
ipated that this structure would be sufficiently complex to demo

Y X b . esponse Differen is used to quantify the accuracy of the
strate procedural limitations, while being simple enough to affor, RFpapproximation(.:[é] q fy y
excellent correlation with a genuine experiment. Note in particular

the dense structure of the FE model around a node in mid-chord, [{aat = {2

just outboard of the wing crank. This is the node that was exam- NRD({aat}, {ax}) = T el 9)

ined in detail, and the dense modelling was necessary—albeit 2

artificially elaborate—to enable the requisite FRFs to be generatédthe FRF data are analytical and therefore not contaminated in
The experimental study is discussed below in section 8. any way by the effects of experimental noise, then the error will

Nomenclature

a = normally distributed variable R = roughness aw = FRF datum
A, B, C = plane fitting constants (gradi- R, = receptance roughness a, = analytical FRF
ents inX, Y & Z respec- s = standard deviation ay = experimental FRF
tively) X, y = Cartesian coordinates ¢, = analytical modeshape vector
[H] = hysteretic damping matrix Xi, Yi, Z; = data points in 3D space ¢y = experimental modeshape vector
[K] = stiffness matrix X, Y, Z = center of gravity of data V? = Laplacian operator
MAC = modal assurance criterion X, Y, Z = shifted data [l = 2-norm of any vectory
MSF = modal scale factor
NRD = normalized response differ-
ence
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Fig. 2(b) Analytical rotation estimations, 6, rotation

decrease monotonically with reduced distance from the rotation
point. This ideal case is not representative of real FRFs, howeve|

from the rotation point, and the amount of noise corrupting the
data, and this result is clearly shown in FigaB(

This figure was generated by computing analytical translation
FRFs at different measurement radii. Then differing amounts of
Gaussian noise were added to the FRFs, and the rotations were
derived from the corrupted data. The accuracy of each rotational
FRF was then assessed through use of the NRD. For each amount
of added noise the minimum error is marked with a circle.

There is a surprising amount of scatter in Fig. 3. This can be
explained by considering two aspects of the way that the case
study was carried out: firstly, the structure’s modes at the frequen-
cies considered have relatively low curvature. Secondly, because
there is no reason to assureeactlythe same amount of random
corruption for different points on the structure, a different random
seed was used for each translation FRF in the simulation.

It is also interesting to note that the NRD error values foréhe
FRFs are generally larger than for the equival@ntotations, and
seem more sensitive to the measurement radius. This case-specific
result—which was mentioned in passing above—is due to the
modal properties of the wing model. The modes up to 400 Hz are
predominately bending in nature, and in particular, no torsion
mode at these low frequencies involves a bending about the center
chord of the wing. This means that the wing section is less highly
curved in they-direction, and therefore the plane-fit is more
accurate. Thé, FRF is less sensitive to the measurement radius
for the same reason.

Figure 3p) shows “plan views” of the error distributions for,
respectively four, eight and sixteen measurement points and shows

Error (NRD)
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Error (NRD)
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ig. 3(a) The variation of optimum measurement radius with added

and is therefore not considered any further in this work. A simp
Gaussian distribution is chosen to corrupt the data; each data point

Saussian noise

is factored as follows:

Four Measurement Points Four Measurement Points
a(w) - a(w)(l +ta S) (10) E 60 A 4 4 E 60 AR d
. o . o EE EE
wherea is a normally distributed variable, aisds a user-specified | £35 * . v - B e ve
.. . . . . = = 20 *00 . 285 20 * * e LS
standard deviation. This noise model is not truly representative ofgg O T M &z e .
the noise contamination manifest on a true experimental test, and = o1 1 10 S o1 1 10
more sophisticated models do exist that produce more realis}ic Gaussian Noise Added (%) Gaussian Noise Added (%)
noise distributions, and realistic-looking coherence estimates [}
Cobb’s noise model includes noise as absolute values, rather than Eight Measurement Points Eight Measurement Points
the simple proportional distribution used in this work. However, z ¢ — T —
Cobb’s work assumes three different regions where noise inﬂu-é E 4 5 - Eé " e .
8 8 *
ences the measurement process: =) S S AR S SE e e ee | e ee
SE ¢ e o=
e an input noise, between the desired input signal and the triie = o1 1 10 = 1 10
input Signa“ Gaussian Noise Added (%) Gaussian Noise Added (%)
e a force transduction error between the measured input forge
and the true input force; and Sixteen Measurement Points Sixteen Measurement Points
e an output error between the measured output and the trpe z 6o e T 60 e
output. EZ w EE w
. . . P §. E 20 EX 22 ..'0""00. 1 §- E 20 0.".00 Q“ b1
In section 6, an attempt is made to estimate the amount of noise Z ool SZ ol
corruption present on FRFs. This procedure would become unngc- 0.1 1 10 0.1 1 10
essarily unwieldy if the noise was described by three parametefs, Gaussian Noise Added (%) Gaussian Noise Added (%)
as in Cobb’s work. The simple proportional noise model is ideat

for this work because the amount of noise corruption is determined
by a single parameter.

&, Rotation

The final error is expected to be a function of both the distaneered points

14 / Vol. 122, JANUARY 2000

Fig. 3(b) Optimum measurement radii for

0, Rotation

differing numbers of mea-
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Fig. 4 Simple demonstration of outliers
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more clearly the positions of minimum error for each value of Frequency (Hz)
noise, which are denoted by the marker on these figures. lItlis
interesting to note that the optimum measurement radius decreases
with an increased number of points. This is because the plane fit is Fig. 5(2) Outlier removal, 6, rotation
better defined by the extra number of measurement points.
It can be concluded from Fig. BY that the optimum measure- LO0E+00 ‘ ]
ment radius is approximately 16 mm for this case study. However, oo — —— Original FRF

it is important to be aware that a compromise would have to bg

5 . R =T S N SR R FRF with Outliers
reached if trying to measure rotations near a corner ofa structurg,

1.00E-02 Compensated FRF

if the internal angle is less than 90 deg. This is because only & . . \ .
small arc would be available for measurement, and the measyrg- ’ N \\
ment points would be very close together. g 00BN / —= -
E,- 1.00E-05 V ! ww“ %\'\“
5 Outlier Removal 2 1oom0 I
An advantage of the plane-fitting technique is that it allows the 1.00E-07 :
location and removal of outlying points. An outlier is a data poirjt 0 50 100 150 200 250 300 350 400

which—for any reason—is particularly distant from related point
Such a datum can significantly degrade the accuracy of a least-
squares fit, since the solution is dominated by the points with
largest error. This effect is demonstrated in Fig. 4. The left-hand
graph shows eight data points, with one point considerably distant
from the others. The solid line shows the least-squares fit, and it is

significantly worse than optimum. A dashed line is showr-8@t,  ajthough the translation FRF has a large value, the rotational FRFs
which is a common definition of an outlier, and the anomalouge small. The NRD is again used to calculate the disparities

point is seen to lie outside this region. The deviations from the,wveen the analytical and the regenerated rotations, and these
plane are defined in the same way as standard deviation from [Re its are presented in Table 1

mean of a statistical distribution, i.e.:

o

Frequency (Hz)

Fig. 5(b) Outlier removal, 6, rotation

Note that the use of the Gaussian noise model does not influence
the applicability of the outlier removal procedure. Any point that
is distant from the plane will be omitted—whatever the source of
noise.

Further interesting insight into the behavior of the plane-fitting
whereN is the number of points, andl is an individual point's technique can be obtained by plotting the deviations from the plane
distance from the best-fit plane. against frequency. Figure 6 shows the deviations for the analytical

Removal of this point from the data set can improve the accthodel, with no added noise, at a radius of 16 mm. It can be seen
racy of the line-fit, as shown in the right hand side figure. Removgat the deviations from the plane are greatest at resonance, simply
is straightforward; any point that is more than three standagécause of the fact that the response is greatest at those frequen-
deviations from the plane is excluded from the data used {gs. The deviations are particularly large at the region around 300
calculate the rotational DoFs. The rotations are then re-calcuIaqu’ and this is the reason that not all the outlying points in Fig. 7

from N — 1 data points, instegd &l points. - ) ere rejected. The standard deviations are so large with no added
Outlier removal was coded into the plane-fitting algorithm, an ise, that only the most disparate of data are discarded by the

the standard deviations from the plane were calculated at eadlh
. ; . lier removal.
frequency point. A demonstration of the improvement that this The work presented above has shown that the optimum mea-
simple method can bring to bear on rotational FRFs is shown in pres . € op
ement radius is a function of the amount of noise on the FRFs,

Fig. 5. An inaccurate reading was simulated by adding 100 percétit. hi K iori. and has therefore d d th
Gaussian noise to one FRF, and the corrupting effect on the pld¥&ch 1S not knowna priori, and has therefore demonstrated the

fit is demonstrated by the disparity between the FRF traces. SUt§fd for @ reliable estimate of the level of corruption present on
heavy corruption can occur sporadically when an LDV is usd@sponse data. A technique is presented below which evaluates an
when laser light is not reflected sufficiently well to the laser sensgPProximation to the equivalent Gaussian noise present on FRFs.
this phenomenon is known as drop-out. Note that in order to focus
entirely on the improvements possible by the removal of a single
particularly anomalous point, all the other translational FRFs were
noise-free.

1 N
ot= 2 o (11)
i=1

Table 1 NRD values before and after outlier removal

When the anomalous data are removed automatically, the FRFs
overlay as expected; however the perfect FRF is not quite repro- FRF with Qutliers Compensated FRE
duced, as there is a region of error around 300 Hz, which is the @, Rotation 0.9470 0.0122
region where the fourth bending mode of the wing dominatef: 9 Rotation o2s
There is a region of low curvature near the node of interest, and lse 2 088 0.002
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Table 2 Procedure for the estimation of equivalent Gaussian noise
1.00E-05

Step Action or Calculation

1.00E-06 1 calculate a figure similar to figure 7 for the analytical model of the structure

/\ of interest;
1.00E-07

N /\/ \/ \ 2 generate the displacement shapes for the experimental model and scale them

Deviations From Least-
Squares Fit

to correspond to the analytical model using the modal scale factor. This

1.00E-08

maps the experimental displacement shapes to approximately the same
0 50 100 150 200 250 300 350 400

Frequency (Hz) magnitude as the corresponding analytical shapes. Calculate the roughness

values for each displacement shape. Then sum these values to create the

Fig. 6 Deviations from the plane-fit experimental receptance roughness;

3 use the figure generated in 1. as a 'look-up' table to cross reference the

6 Gaussian Noise Estimator

Waters [5] has defined mughnesgparameter, defined & FE
grid points, that uses the Laplacian operator to evaluate an estimjte
of noise on modeshapes as:

calculated receptance roughness back to an estimate of the equivalent

Gaussian noise present on the structure.

N
_ 2 proportional noise was added to FRFs at every translational DoF.
R= E VWO, ) (12) Receptance roughness was the calculated at each value of added
=1 noise. Because of the random nature of the added noise, there is
whereW(x, y) is a surface fit of measure response and: some variation in the calculated values of receptance roughness for
any value of added noise. For this reason, ten calculations were
) 9 W 92w performed at each of twenty-five different amounts of added noise
VWX, y) = 5oz + ay? (13) o enable a mean value curve to be drawn through the data, and it

is this best-fit line which will be used in the noise estimation
This method is extended here to the estimation of noise on figchnique described below. The procedure for using the method for
quency response functions. experimental data is shown in Table 2.

A roughness parameter is calculated at every frequency point ofin principle, an equivalent estimator may be constructed from
interest, combining the translational receptance at every nodectsherence values. However, such an estimator would suffer due to
create a displacement shape. These roughness parameters areifagequacies of the proportional noise model, particularly at anti-
summed over the frequency range to generateptance rough- resonance, where genuine experimental coherence tends to be low.
ness. This is because of the fact that noise dominates the response; a

proportional noise model will not exhibit this property, since the
F noise is proportional, and will therefore not dominate at any
R,= 2 IR| (14)  frequency.

i=1

This measure is case-dependent, and the relationship betwéenNoise Estimation Case Studies
receptance roughness and Gaussian noise is not evident. Figure Since there may be significant differences between the baseline
shows receptance roughness plotted against the amount of Ga&&model and the experimental model, it is necessary to test the
ian noise added to the FRFs. The values of receptance roughregsslicability of the noise estimation technique to simulagger-
are seen to increase with added noise, as expected, and in addiiimental situations that are distinct from the FE model. Two dif-
the variance of the data is seen to increase with increased adéént case studies were performed to assess the efficacy of the
noise. This phenomenon is a feature of the noise model, andLiplacian-based technique, one case study representing an accu-
explained below. Figure 7 was generated as follows: twenty-fivate FE model, and the other a more disparate theoretical model.
values for Gaussian noise were selected, and this amount offhe lightly-perturbed model (hereafter referred taxase ) was
generated by factoring the mass of the wingtip and root elements
by 140 percent, and factoring the stiffness of the mid-span ele-
ments by the same amount, as shown in Fig. 8. The error in the
more disparate of the two test caseade 2 was a uniform taper
such that the thickness at the root of the model was changed from
3 mm to 3.6 mm, and the thickness at the wingtip was altered to 2.4
mm. The modes of these two test cases differ considerably from
those of the unperturbed model as demonstrated by Table 3, which
shows the Modal Assurance Criterion (MAC) values [8] between
the test cases and the baseline model. The MAC values are the
simplest method of assessing the difference between structural
models.

The MAC is a commonly-used method of comparing modal
0 0.05 0.1 0.15 0.2 0.25 vectors, and is typically used for estimating the amount of corre-

Added Gaussian Noise lation between experimental and analytical modes. It is defined as:

{xbi{ dahill3
Hox T da [ {dal]

g
n

(3]
»

—
/]

[S

Fd
tn

Receptance Roughness

-

<

Fig. 7 Receptance roughness calculated at different levels of corrup- MAC{ dy}i, {d)A}j) = S (15)
X

tion
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Table 3 MAC values between the perturbed case studies and the un-
perturbed baseline FE model
40% Mass Increase

Mode MAC Nature of Mode
Case | Case 2
1 0.9975 0.9834 1st Bending
2 0.9967 0.9669 2nd Bending
3 0.9981 0.9897 1st Torsion
40% Stiffness Increase 4 0.9928 0.9414 3rd Bending
5 0.9955 0.9710 4th Bending
6 0.9855 0.8637 2nd Torsion

40% Mass Increase

correlated displacement shapes at these frequencies), they tend to
be at lower magnitudes. Note that the magnitude of the roughness
is greatest at frequencies corresponding to the analytical reso-
nances, as would be expected.

The rescaling of the displacement shapes via the MSF is an
essential part of the technique for noise estimation. If it is not
It can clearly be seen that there is a significant degree of dispafigrformed, differences in magnitude of displacement shape be-
between the two test cases and the baseline analytical model, amgen different models could dominate the receptance roughness
this is further demonstrated in Fig. 9, which shows the poimfalculation. Large differences in magnitude could occur even if
receptances of the three models at a frequency range of 0—-400 & models were extremely close because of the finite frequency
resolution of testing. If one model has a resonance at a measured

7.1 Noise Estimation Results. Three plots of roughness frequency line and another does not, then the magnitude of the

against frequency for zero added noise are shown in Fig. 10; ther g ' :
. . . . onse of the first model—and hence its receptance roughness—
demonstrate that the scaling via the MSF is working, and th %Ilpbe significantly larger than that of the secoﬁd model. 9

while there are small areas of discrepancy (which represent poor yFigure 11 shows estimated noise values, which have been gen-

erated as detailed in 6, above, plotted against Gaussian noise that
was added to the starting FRFs, for both the lightly and strongly

Fig. 8 Lightly perturbed model, case 1
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Fig. 10 Roughness disparity for the test case models Fig. 12 Comparison of experimental and theoretical translation FRFs
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percent. Figure 4 was then used, a measurement radius of 16 mm
1.O0E+00 was selected, and sixteen points were measured around the node of
LOOE-01 interest. o _ _ _

’ The determination of the optimum measurement radius via the
% 1.00E-02 \ , detailed FE study and the calculation of the amount of noise
5 L\ /\ present on the data would not be practical for every measurement
2 1.00E-03 i A point. In particular the augmenting of the FE model with the dense
= \}\ \/ \ A \ modelling around a node of interest is particularly time-
1.00E-04 I/ consuming. It is envisaged that experience could be gained rapidly
so that a measurement radius could be chosen for a given exper-
1.00E-05 ; L ; )
0 0 100 150 200 250 300 350 400 imental test set-up after only a few applications o_f this technlque.
The assumption would then be made that a particular region of a
Frequency (Hz) structure was subject to equal amounts of noise corruption for all

measurement locations in that region.
Fig. 13 Experimental roughness Experimental rotations are overlaid with corresponding theoret-
ical data in Fig. 14. This figure represents a very promising result.
The anomalies present in the rotation FRFs can largely be traced
perturbed models. The estimates are clustered around a lineba€k to inadequacies in the translation FRFs, such as that shown in
unity gradient which represents a perfect noise estimation.  the top of Fig. 12. The peculiarities around 150 Hz are caused by
The performance of the method is seen to degrade S||ght|ytaﬁ Corruptlon on the translation FRFs, mentioned above. Other

higher levels of corruption, due to a number of factors: anomalies are visible at low frequencies, where noise can be
] ) relatively large, and also around 300 Hz. This is a region of low
the rescaling via the MSF may have been upset; curvature, as discussed above, and the measurement of a mode

the receptance roughness is not a precise function of addgste is a genuine difference between theory and experiment, and
noise, and the variance of the value calculated will increaggerefore is an interesting result.

with increasing corruption values; and

e a particular set of added Gaussian noise may have a greater . .
corrupting effect on the data than another set of noise of tie 1he Use of Complex Data in Rotation Measurements
same standard deviation. This is a property of the GaussiarThe technique for the measurement of rotations described in this
noise model. paper is readily extendible to complex FRF data by plane-fitting to

the real and imaginary parts of the response data. However detailed

In spite of the slight degradation of results at higher added noixg . ciqof optimum measurement radius, and the noise estimation
levels, this represents an encouraging result. This technlqueg%z

; ocedure, becomes more difficult when dealing with imaginary
ables the amount of corruption present on frequency respo {ta, because the imaginary component is zero away from reso-
functions to be estimated accurately, and this has important impliz '

cations in the selection of measurement radius as discussed i gice. The proportional noise model used in this work is not
L e equate for this situation, since it will not corrupt the data at all
above, and as shown in Fig. 2.

when the response is zero. This is unrepresentative of any genuine
8 Experimental Study

While simulated case studies are invaluable in validating new
techniques, real experimental tests must be performed in order to 1 gog+00

encompass the many unknown sources of error manifest in the real LOOE-01 —— Theoretical

world. The uniform plate considered above in the finite elemen§ ™ Rotation

study was manufactured from 3 mm thick mild steel and sugg 1.00E-02 \ ----- Estimated

pended in a condltlc_m gpprqachlng free-frt_ee, on elastic cords. 5 1.00E-03 [ A ER’;lt’:tri‘;:‘le“‘a‘ ]

pseudo-random excitation signal was applied to the structure Vig | ¢og-04 a\ A \J\ o /] ]\

an electrodynamic shaker. § \/ \»—/\ /\\
Rapid data acquisition is a prerequisite for this work; as gng '**“* = V’ ~om

example of what can easily be achieved using an LDV, measufes 1.00E-06 4 .

ment of sixteen experimental FRFs, with ten averages, over the 1.00E-07

range 0—400 Hz with a frequency resolution of 0.5 Hz took 0 50 100 150 200 250 300 350 400

approximately ten minutes. In addition, this procedure was fully Frequency (Hz)

automated, requiring little user interaction.
A comparison of two translation FRFs is presented in Fig. 12.
These are the analytical and experimental translations at the rota-
tion point, and thus it is hoped that they will display the anomaligs
between theory and experiment for this case. In particular, the 1.00E+00

Fig. 14(a) Experimental and theoretical FRFs, 6, rotation

resonance at approximately 150 Hz is poorly defined in the expgr; 1.00E-01 eorctical

imental data, due perhaps to structure-shaker interaction or son® g \ | | | | i

other effect that is not modelled in the FE analysis. At higharz \ h Eipeﬁmem,

frequencies, some divergence in the natural frequencies can|be !-00E-03 \ /r > \ Rotation n
§- 1.00E-04 A5

observed. This is to be expected and is caused by the approxi
tions inherent in the finite element modelling method. It is wor
emphasising the exceptional quality of the data provided by t

—
SR&epta

1.00E-05 .' ; \f RIS \\ \

v 1 I B

Lo - 1.00E-06 :
LDV system, which is a prerequisite of the method presented B
this paper. 1.00E-07
The receptance roughness for the structure was calculated frpm 0 50 100 150200 250 300 350 400
Fig. 13, which shows the roughness against frequency for this Frequency (Hz)

experimental study. The value was then cross-referenced back t0
Fig. 7, which gave a value of equivalent Gaussian noise of 1.04  Fig. 14(b) Experimental and theoretical FRFs, 0, rotation
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Table 4 MAC [8] values between the analytical FE model and the section presents a highly-condensed description of such a study [9]

tapered case study using the FRF sensitivity model updating technique [1, 5].
Mode Number MAC 10.1 Case Study. The free-free wing section was again used
. — as the_ basis for a case study into the effe(_:ts of rotat_ional DoFs. An
. experimentaimodel was created by tapering the thickness of the
2 0.8536 uniform wing from 4.5 mm at the root to 1.5 mm at the tip. The
3 0.9454 modes of thisexperimentaimodel differ considerably from those
of the original model, as shown in Table 4.
5 G The FRFs from thexperimentamodel are corrupted with 10
5 0.8089 percent Gaussian noise according to Eqg. (10) and proportional
P o'eeoT hysteretic damping was added to tleperimentalmodel as
shown.
7 0.7795
8 0.5243 [H] = Bu[K] where By = 0.005 (16)

To improve the conditioning of the problem, macro elements are
used. Macro elements in these cases were chosen in chordwise
pairs, as shown in Fig. 15. This choice of updating parameters is
consistent with the perturbations applied to createsttperimental
models; therefore, the updating parameters span the errors exactly,
and in the absence of noise, a successful update will afford an
exactly correct solution. A perfect solution is not possible if the
choice of updating parameters is inadequate. The important topic
of p-value selection is addressed in [9].

Previous work [5] has shown that the likelihood of a successful
update is increased if high order frequencies are used. With this
consideration in mind, one hundred frequency points were chosen,
evenly distributed within the range 1-1200 Hz.

Two updating cases were run: one with only th®oFs avail-
able, and one witlz, 6, and 6, DoFs available. The unavailable
experimentaDoFs are replaced with the analytical DoFs by sim-
ple matrix mixing. Figure 16 shows the final solutions after ten
iterations of the FRF sensitivity method together with the exact
solutions. A small improvement is shown when the rotational
DoFs are included; the mass and stiffness estimates are slightly
more accurate when rotations are included, and the damping esti-
mates are a significant improvement.

Fig. 15 Case study model showing macro element assignment

experiment, where the imaginary response is dominated by no

tf Concluding Remarks
away from resonance.

A method for extracting rotations experimentally using the
. _capacity of laser Doppler velocimetry for dense measurements has
.10 The Effect of Rotational DoFs on FE Model Updat been presented. An FE study was conducted in order to determine
Ing optimum parameters for this calculation, and this has shown that
A detailed updating study using rotational DoFs constitutesraeasurement noise is critical to the performance of this procedure.
large volume of work and is beyond the scope of this paper. ThisAn innovative noise estimation procedure has been suggested.

Mass Stiffuess Hysteretic Mass Stiffness Hysteretic

24 24
N 3.007] N ]l
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Fig. 16 Final p-values for 1.5-4.5 mm tapaered wing, with 0.5 percent hysteretic damping,
10 percent noise
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Promising results for this new technique were obtained when it3 Lin, R. M., and He, J., "Analytical Model Improvement Using Modified IEM,”
was tested on two different FE case studies, and in addition,Pjec- Structural Dynamics Modelling Test, Analysis and Correlati®893, pp.

yielded a realistic estimate of noise on the experimental case stu%ﬁg}_lDuéne M. L. M., and Ewins, D. J., “Some Insights into the Importance of

By means of an experimental cas.e.study, it has been shown thaﬁtional Degrees of Freedom and Residual Terms in Coupled Structure Analysis,”
laser velocimetry possesses the ability to extract accurate expemiac Xiii, 1995, pp. 164—170.
mental rotations. 5 Waters, T. P.Finite Element Model Updating Using Frequency Response
Brief results from an updating study using FRF sensitivity hayainctions,PhD Thesis, Department of Aerospace Engineering, University of Bristol,

7 . . , 1995.
been reported, and it has been shown that the inclusion of rotas Guyan, R. J., “Reduction of Mass and Stiffness Matricé$AA Journal,Vol.

tional DoFs yields a small, but significant improvement in thg no. 2, 1965, p. 380.

quality of results obtained. 7 Cobb, R. E.,Confidence Bands, Measurement Noise, and Multiple Input—
Multiple Output Measurements Using the Three-Channel Frequency Response Func-
tion Estimator,PhD Thesis, Department of Mechanical Engineering, Virginia Poly-
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