1,736 research outputs found

    The role of humic substances in sediment phosphorus release in northern lakes

    Get PDF
    phosphorus (P) release are largely unexplored. Here we elucidated the factors behind experimentally-derived sediment release rates of P by diffusion (DF) in four Finnish lakes with a range of colour. Next, we extended our analysis to a larger set of northern lakes for further insights regarding possible implications of organic substances on sediment P release. The significant correlation between pore-water soluble reactive P and dissolved iron, and a positive effect of ironbound sedimentary P (Fe-P) on DF supports the classic paradigm of redox-dependent P release in the four Finnish lakes studied. Nevertheless, the P release from Fe-P may be inhibited by humic substances, as we observed lower Fe-P and negative DF in two humic rich lakes (high DOC). The analysis of a larger set of northern lakes supported the negative effect of humic substances on P release rate (RR) determined by in situ P increases. In this dataset, DOC correlated positively with water colour and negatively with RR. Furthermore, multiple stepwise regression analysis selected sediment total P and organic matter content in sediments (LOI) as the best predictors of RR, similar to a previously published model by Nurnberg (1988). While the model predictions (RRpred) were correlated to RR in the present study, they tended to overestimate RR that was determined in closed experimental systems. The inhibiting effects of humic substances on RR may be manifested in both internal P loading and primary production.Peer reviewe

    Spatio-temporal variations in sediment phosphorus dynamics in a large shallow lake: Mechanisms and impacts of redox-related internal phosphorus loading

    Get PDF
    The role of redox-related sediment phosphorus (P) release in shallow polymictic lakes remains poorly understood. Our previous studies in large and shallow Lake Peipsi suggested the importance of the redox-related P release in internal P loading. In the current study, we explored the validity of this hypothesis by also considering organic sediment P (Org-P). We analysed spatio-temporal changes in diffusive P flux and sediment P forms determined by P fractionation and nuclear magnetic resonance (NMR) spectroscopy in summer 2021. Using 1997–2021 data, we computed internal P load (IL) by two methods and studied their relationships with several water quality variables. Anoxia of sediment surfaces and P release progressed with an increase in water tem- perature during summer. In the long-term, IL estimates by two methods were similar (mean values: 315 and 346 mg/m2/year) and correlated with the predicted anoxia of sediment surfaces (AApred). A contribution of sediment iron-bound P (Fe-P) to P release was indicated by the positive correlation of Fe-P with orthophosphate (NMR) in the short-term studies. No similar evidence was found for Org-P, which contradicts the common tendency to attribute internal P loads largely to Org-P in eutrophic lakes. Nevertheless, organic matter seemed to support reductive dissolution, because seasonal changes in sediment Org-P correlated with those in Fe-P, and organic matter content and diffusive P flux were negatively correlated over different sites. Complex bottom morphology and hydrology affected spatial distribution of the sediment P forms and masked the relationships between sediment P variables and P release. Finally, the importance of redox-related release was reflected in significant relationships between AApred and associated IL with Secchi depth transparency, chlorophyll a concentration, and the biomass of phytoplankton and cyanobacteria. To our knowledge, this is the first time when such direct ev- idence was provided for a large polymictic lake.This study was funded by the Estonian Research Council grant PRG1167 and Estonian Ministry of Environment 4-1/21/76. Also, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963.This study was funded by the Estonian Research Council grant PRG1167 and Estonian Ministry of Environment 4-1/21/76. Also, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963

    A novel mutation in GJA8 associated with autosomal dominant congenital cataract in a family of Indian origin

    Get PDF
    Purpose To identify the underlying genetic defect in a four-generation family of Chinese origin with autosomal dominant congenital cataract-microcornea syndrome (CCMC). Methods All individuals in the study underwent a full clinical examination and the details of history were collected . Genomic DNA extracted from peripheral blood was amplified by polymerase chain reaction (PCR) method and the exons of all candidate genes were sequenced. Results Direct sequencing of the encoding regions of the candidate genes revealed a heterozygous mutation c.592C→T in exon 2 of the gap junction protein, alpha 8 (GJA8) gene. This mutation was responsible for the familial disorder through the substitution of a highly conserved arginine to tryptophan at codon 198 (p.R198W). This change co-segregated with all affected members of the family, but was not detected either in the non-carrier relatives or in the 100 normal controls. Conclusions This report is the first to relate p.R198W mutation in GJA8 with CCMC. The result expands the mutation spectrum of GJA8 in associated with congenital cataract and microcornea, and implies that this gene has direct involvement with the development of the lens as well as the other anterior segment of the eye

    Numerical computations of facetted pattern formation in snow crystal growth

    Get PDF
    Facetted growth of snow crystals leads to a rich diversity of forms, and exhibits a remarkable sixfold symmetry. Snow crystal structures result from diffusion limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three space dimensions using a new computational method recently introduced by the authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. The computations also suggest that surface energy effects, although small, have a larger effect on crystal growth than previously expected. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns and scrolls on plates. Although all these forms appear in nature, most of these forms are computed here for the first time in numerical simulations for a continuum model.Comment: 12 pages, 28 figure

    Sutural cataract associated with a mutation in the ferritin light chain gene (FTL) in a family of Indian origin

    Get PDF
    PURPOSE: The molecular characterization of 27 members of an Indian family, with 13 members in four generations, affected with Y-sutural congenital cataract. METHODS: Detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with multipoint lod score and haplotype analysis was performed. Mutation screening was carried out in the candidate gene by bi-directional sequencing of amplified products. RESULTS: A maximum two-point lod score of 6.37 at theta=0.00 was obtained with marker D19S879. Haplotype analysis placed the cataract locus to a 5.0 cM region between D19S902 and D19S867, in close proximity to the L-ferritin light chain gene (FTL) on chromosome 19q13.3. Hematological tests in two affected individuals showed very high levels of serum ferritin without iron overload leading to the diagnosis of hyperferritinemia-cataract syndrome. Mutation screening in FTL identified a G>A change at position 32 (c.-168G>A) in a highly conserved 3 nucleotide motif that forms a loop structure in the iron responsive element (IRE) in the 5'-untranslated region (5'-UTR). This nucleotide alteration was neither seen in any unaffected member of the family nor found in 50 unrelated control subjects. CONCLUSIONS: The present study is the first report of a Y-sutural congenital cataract mapping to 19q13.3. The mutation observed in FTL in this family highlights the phenotypic heterogeneity of the disorder in relation to the genotype as the identical mutation (32 G>A) has previously been reported in two Italian families with entirely different phenotypes. It is also the first report of hereditary hyperferritinemia-cataract syndrome in a family of Indian origin

    Combining TCAD and Monte Carlo methods to simulate CMOS pixel sensors with a small collection electrode using the Allpix2^{2} framework

    Get PDF
    Combining electrostatic field simulations with Monte Carlo methods enables realistic modeling of the detector response for novel monolithic silicon detectors with strongly non-linear electric fields. Both the precise field description and the inclusion of Landau fluctuations and production of secondary particles in the sensor are crucial ingredients for the understanding and reproduction of detector characteristics. In this paper, a CMOS pixel sensor with small collection electrode design, implemented in a high-resistivity epitaxial layer, is simulated by integrating a detailed electric field model from finite element TCAD into a Monte Carlo based simulation with the framework. The simulation results are compared to data recorded in test-beam measurements and very good agreement is found for various quantities such as cluster size, spatial resolution and efficiency. Furthermore, the observables are studied as a function of the intra-pixel incidence position to enable a detailed comparison with the detector behavior observed in data. The validation of such simulations is fundamental for modeling the detector response and for predicting the performance of future prototype designs. Moreover, visualization plots extracted from the charge carrier drift model of the framework can aid in understanding the charge propagation behavior in different regions of the sensor

    A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family

    Get PDF
    PURPOSE: The molecular characterization of an Indian family having 10 members in four generations affected with a unique fan-shaped cataract-microcornea syndrome. METHODS: Detailed family history and clinical data were recorded. A genome-wide screening by two-point linkage analysis using more than 400 microsatellite markers in combination with multipoint lod score and haplotype analysis was carried out. Mutation screening was performed in the candidate gene by bi-directional sequencing of amplified products. RESULTS: The cataract-microcornea locus in this family was mapped to a 23.5 cM region on chromosome 21q22.3. Direct sequencing of the candidate gene CRYAA revealed a heterozygous C>T transition resulting in the substitution of the highly conserved arginine at position 116 by cysteine (R116C). CONCLUSIONS: This study provides the report of mapping a locus for syndromal cataract (cataract-microcornea syndrome) on 21q22.3. The mutation observed in CRYAA in the present family highlights the phenotypic heterogeneity of the disorder in relation to the genotype, as an identical mutation has previously been reported in an American family with a different type of cataract. The "fan-shaped cataract" observed in the present family has not been reported before

    Nuclear proto-oncogene products transactivate the human papillomavirus type 16 promoter.

    Get PDF
    Human papillomavirus (HPV) type 16 and 18 viral genomes are frequently detected in cervical and penile cancer biopsies. Although this strongly suggests a prominent role for HPV infection in the development of genital cancer, other genetic or environmental factors are also involved. Genital cancer is postulated to result from loss of cellular control functions, which leads to an unregulated expression of HPV oncogenic proteins. In our study, we determined the trans-activating properties of nuclear proto-oncogene proteins c-Fos, c-Jun and c-Myc on P97 enhancer/promoter activity of HPV16. Using a CAT-reporter construct containing the HPV16 enhancer/promoter element, we investigated the trans-activating effects of c-Fos, c-Jun, c-Myc, and E2 in cervical HT-3 cells. c-Fos and c-Jun overexpression resulted in a 3.3- and 3.1-fold up-regulation of CAT activity. Only 2-fold induction was determined by co-transfection with c-myc and the viral transcription factor E2. Based on these findings, we investigated the expression of HPV DNA (16 and 18) as well as nuclear proto-oncogenes (c-fos, c-jun and c-myc) in nine cervical cancers by in situ hybridisation. In six out of nine carcinomas, HPV16 and/or HPV18 DNA was detectable. All tumours showed an intense and homogeneous expression of c-fos and c-jun mRNA, while the signal for c-myc was detectable only in four specimens. These data suggest that deregulation of nuclear proto-oncogene expression may contribute to an overexpression of HPV-derived oncogenic proteins (E6 and E7), which is generally hypothesised to be an important step in the malignant transformation of HPV-associated tumours
    corecore