3,551 research outputs found
Some Remarks on a Generalized Vector Product
In this paper we use a generalized vector product to construct an exterior
form , where
, . Finally, for we
introduce the reversing operation to study this generalized vector product over
palindromic and antipalindromic vectors.Comment: 10 pages, 14 pages in the published version: Revista Integraci\'o
On the collapse in fourth order gravities
The gravitational collapse in fourth order theories of gravity defined by an
arbitrary action of the scalar curvature shows significant deviations with
General Relativity. The presence of a new scalar mode produces a higher initial
contraction that favors the reduction of the collapsing time. However,
depending on the particular model, there are fundamental differences when the
modifications to the General Relativity collapse leave the linear regime. These
analyses can be used to exclude an important region of the parameter space
associated with alternative gravitational models.Comment: 4 pages, 2 figures, Contribution to the Proceedings of Spanish
Relativity Meeting ERE2011, Madrid 201
Coulomb integrals for the SL(2,R) WZNW model
We review the Coulomb gas computation of three-point functions in the SL(2,R)
WZNW model and obtain explicit expressions for generic states. These amplitudes
have been computed in the past by this and other methods but the analytic
continuation in the number of screening charges required by the Coulomb gas
formalism had only been performed in particular cases. After showing that ghost
contributions to the correlators can be generally expressed in terms of Schur
polynomials we solve Aomoto integrals in the complex plane, a new set of
multiple integrals of Dotsenko-Fateev type. We then make use of monodromy
invariance to analytically continue the number of screening operators and prove
that this procedure gives results in complete agreement with the amplitudes
obtained from the bootstrap approach. We also compute a four-point function
involving a spectral flow operator and we verify that it leads to the one unit
spectral flow three-point function according to a prescription previously
proposed in the literature. In addition, we present an alternative method to
obtain spectral flow non-conserving n-point functions through well defined
operators and we prove that it reproduces the exact correlators for n=3.
Independence of the result on the insertion points of these operators suggests
that it is possible to violate winding number conservation modifying the
background charge.Comment: Improved presentation. New section on spectral flow violating
correlators and computation of a four-point functio
Mortality associated with avian reovirus infection in a free-living magpie (Pica pica) in Great Britain
Avian reoviruses (ARVs) cause a range of disease presentations in domestic, captive and free-living bird species. ARVs have been reported as a cause of significant disease and mortality in free-living corvid species in North America and continental Europe. Until this report, there have been no confirmed cases of ARV-associated disease in British wild birds
Computer-aided diagnosis of pancreatic and lung cancer
When we talk about cancer diagnosis the most
important thing is early diagnosis to prevent cancer cells from
spreading. We may also consider the high cost of diagnostic
tests. Our approach seeks to address both problems. It uses a
software based on Bayesian networks that simulates the causeeffect relationships and gets the chance of suffering a
pancreatic cancer or lung cancer. This software would support
doctors and save a lot of time and resources
General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation
An evolution of radiant shock wave front is considered in the framework of a
recently presented method to study self-gravitating relativistic spheres, whose
rationale becomes intelligible and finds full justification within the context
of a suitable definition of the post-quasistatic approximation. The spherical
matter configuration is divided into two regions by the shock and each side of
the interface having a different equation of state and anisotropic phase. In
order to simulate dissipation effects due to the transfer of photons and/or
neutrinos within the matter configuration, we introduce the flux factor, the
variable Eddington factor and a closure relation between them. As we expected
the strength of the shock increases the speed of the fluid to relativistic
values and for some critical ones is larger than light speed. In addition, we
find that energy conditions are very sensible to the anisotropy, specially the
strong one. As a special feature of the model, we find that the contribution of
the matter and radiation to the radial pressure are the same order of magnitude
as in the mant as in the core, moreover, in the core radiation pressure is
larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish
Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical
Paradise to Astrophysical Observations
Kondo Screening and Magnetic Ordering in Frustrated UNi4B
UNi4B exhibits unusual properties and, in particular, a unique
antiferromagnetic arrangement involving only 2/3 of the U sites. Based on the
low temperature behavior of this compound, we propose that the remaining 1/3 U
sites are nonmagnetic due to the Kondo effect. We derive a model in which the
coexistence of magnetic and nonmagnetic U sites is the consequence of the
competition between frustration of the crystallographic structure and
instability of the 5f moments.Comment: 4 pages, 2 figure
Regional diversity in the murine cortical vascular network is revealed by synchrotron X-ray tomography and is amplified with age
Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis
Quasiperiodic graphs: structural design, scaling and entropic properties
A novel class of graphs, here named quasiperiodic, are constructed via
application of the Horizontal Visibility algorithm to the time series generated
along the quasiperiodic route to chaos. We show how the hierarchy of
mode-locked regions represented by the Farey tree is inherited by their
associated graphs. We are able to establish, via Renormalization Group (RG)
theory, the architecture of the quasiperiodic graphs produced by irrational
winding numbers with pure periodic continued fraction. And finally, we
demonstrate that the RG fixed-point degree distributions are recovered via
optimization of a suitably defined graph entropy
Creep and shrinkage of self compacting concrete of medium-strenght
Self-compacting concrete (SCC) is an innovative concrete that does not require vibration for placing and compacting. SCC, developed in Japan in the 1980s, provides a present-day and attractive challenge for many researchers, as the long list of papers on the topic corroborates. Nevertheless, the durability of SCC, especially medium-low strength SCC, provides the researcher with opportunities for study in depth. This paper deals with the shrinkage and creep of SCC: three SCC mixtures, with 30 MPa compressive strength, are studied. The main differences among the SCCs involve the type of the cement: one SCC with type I cement and two SCCs with blended cements. The shrinkage and creep of the three SCCs are studied and compared. Fresh properties and mechanical properties are also evaluated. The shrinkage strains and creep are calculated by means of ACI 209 and Eurocode 2 models. These models overestimate the shrinkage strains and undervalue the creep for the studied concretes
- âŠ