37 research outputs found

    Structural Characterization of Colloidal Core-shell Polymer-based Nanoparticles Using Small-angle X-ray Scattering

    Get PDF
    Colloidal particle complexes are often characterized by small angle X-ray scattering (SAXS) techniques. The present work demonstrates SAXS analysis of inhomogeneous core-shell nanoparticles with complex shell morphologies. Different experimental techniques such as variation of particle composition and contrast variation method, and analytical techniques such as Monte Carlo simulation and indirect Fourier transformation are applied to obtain structural parameters of polymer-based core-shell nanoparticles. It is shown that the SAXS results are consistent with other measurements performed by electron microscopy, atomic force microscopy, dynamic light scattering, thermogravimetry, helium pycnometry and BET. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3477

    Aligning self-assembled gelators by drying under shear

    Get PDF
    We show how drying under shear can be used to prepare aligned fibres and worm-like micelles from low molecular weight gelators. Shearing followed by drying leads to the dealignment before the water can be removed; continuous shear whilst drying is required to maintain the alignment. Combining a slow pH change with continuous shear allows alignment of the gelling fibres, which can then be dried

    Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media

    Get PDF
    Over the past two decades, block copolymer vesicles have been widely used by many research groups to encapsulate small molecule drugs, genetic material, nanoparticles or enzymes. They have also been used to design examples of autonomous self-propelled nanoparticles. Traditionally, such vesicles are prepared via post-polymerization processing using a water-miscible co-solvent such as DMF or THF. However, such protocols are invariably conducted in dilute solution, which is a significant disadvantage. In addition, the vesicle size distribution is often quite broad, whereas aqueous dispersions of relatively small vesicles with narrow size distributions are highly desirable for potential biomedical applications. Alternatively, concentrated dispersions of block copolymer vesicles can be directly prepared via polymerization-induced self-assembly (PISA). Moreover, using a binary mixture of a relatively long and a relatively short steric stabilizer block enables the convenient PISA synthesis of relatively small vesicles with reasonably narrow size distributions in alcoholic media (C. Gonzato et al., JACS, 2014, 136, 11100–11106). Unfortunately, this approach has not yet been demonstrated for aqueous media, which would be much more attractive for commercial applications. Herein we show that this important technical objective can be achieved by judicious use of two chemically distinct, enthalpically incompatible steric stabilizer blocks, which ensures the desired microphase separation across the vesicle membrane. This leads to the formation of well-defined vesicles of around 200 nm diameter (size polydispersity = 13–16%) in aqueous media at 10% w/w solids as judged by transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering

    RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer

    Get PDF
    We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition−fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [Yang, P.; et al. Macromolecules 2013, 46, 8545−8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer coreforming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles

    Flow-induced crystallisation of polymers from aqueous solution

    Get PDF
    Synthetic polymers are thoroughly embedded in the modern society and their consumption grows annually. Efficient routes to their production and processing have never been more important. In this respect, silk protein fibrillation is superior to conventional polymer processing, not only by achieving outstanding physical properties of materials, such as high tensile strength and toughness, but also improved process energy efficiency. Natural silk solidifies in response to flow of the liquid using conformation-dependent intermolecular interactions to desolvate (denature) protein chains. This mechanism is reproduced here by an aqueous poly(ethylene oxide) (PEO) solution, which solidifies at ambient conditions when subjected to flow. The transition requires that an energy threshold is exceeded by the flow conditions, which disrupts a protective hydration shell around polymer molecules, releasing them from a metastable state into the thermodynamically favoured crystalline state. This mechanism requires vastly lower energy inputs and demonstrates an alternative route for polymer processing

    Role of sheet-edge interactions in β-sheet self-assembling peptide hydrogels

    Get PDF
    Hydrogels’ hydrated fibrillar nature makes them the material of choice for the design and engineering of 3D scaffolds for cell culture, tissue engineering, and drug-delivery applications. One particular class of hydrogels which has been the focus of significant research is self-assembling peptide hydrogels. In the present work, we were interested in exploring how fiber–fiber edge interactions affect the self-assembly and gelation properties of amphipathic peptides. For this purpose, we investigated two β-sheet-forming peptides, FEFKFEFK (F8) and KFEFKFEFKK (KF8K), the latter one having the fiber edges covered by lysine residues. Our results showed that the addition of the two lysine residues did not affect the ability of the peptides to form β-sheet-rich fibers, provided that the overall charge carried by the two peptides was kept constant. However, it did significantly reduce edge-driven hydrophobic fiber–fiber associative interactions, resulting in reduced tendency for KF8K fibers to associate/aggregate laterally and form large fiber bundles and consequently network cross-links. This effect resulted in the formation of hydrogels with lower moduli but faster dynamics. As a result, KF8K fibers could be aligned only under high shear and at high concentration while F8 hydrogel fibers were found to align readily at low shear and low concentration. In addition, F8 hydrogels were found to fragment at high concentration because of the high aggregation state stabilizing the fiber bundles, resulting in fiber breakage rather than disentanglement and alignment

    Flow-induced protein chain deformation, segmental orientation, and phase separation in native silk feedstock

    Get PDF
    The ability of many arthropods to spin silk and its many uses bear testament to its importance in Nature. Despite over a century of research, however, the spinning process is still not fully understood. While it is widely accepted that flow and chain alignment may be involved, the link to protein gelation remains obscure. Using combinations of rheology, polarized light imaging, and infrared spectroscopy to probe different length scales, this work explored flow-induced gelation of native silk feedstock from Bombyx mori larvae. Protein chain deformation, orientation, and microphase separation were observed, culminating in the formation of antiparallel β-sheet structures while the work rate during flow appeared as an important criterion. Moreover, infrared spectroscopy provided direct observations suggesting a loss of protein hydration during flow-induced gelation of fibroin in native silk feedstock, which is consistent with recently reported hypotheses

    Rational synthesis of novel biocompatible thermoresponsive block copolymer worm gels

    Get PDF
    It is well known that reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) enables the rational design of diblock copolymer worm gels. Moreover, such hydrogels can undergo degelation on cooling below ambient temperature as a result of a worm-to-sphere transition. However, only a subset of such block copolymer worms exhibit thermoresponsive behavior. For example, PMPC26–PHPMA280 worm gels prepared using a poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) precursor do not undergo degelation on cooling to 6 °C (see S. Sugihara et al., J. Am. Chem. Soc., 2011, 133, 15707–15713). Informed by our recent studies (N. J. Warren et al., Macromolecules, 2018, 51, 8357–8371), we decided to reduce the mean degrees of polymerization of both the PMPC steric stabilizer block and the structure-directing PHPMA block when targeting a pure worm morphology. This rational approach reduces the hydrophobic character of the PHPMA block and hence introduces the desired thermoresponsive character, as evidenced by the worm-to-sphere transition (and concomitant degelation) that occurs on cooling a PMPC15–PHPMA150 worm gel from 40 °C to 6 °C. Moreover, worms are reconstituted on returning to 40 °C and the original gel modulus is restored. This augurs well for potential biomedical applications, which will be examined in due course. Finally, small-angle X-ray scattering studies indicated a scaling law exponent of 0.67 (≈2/3) for the relationship between the worm core cross-sectional diameter and the PHPMA DP for a series of PHPMA-based worms prepared using a range of steric stabilizer blocks, which is consistent with the strong segregation regime for such systems

    In situ small-angle X-ray scattering studies during the formation of polymer/silica nanocomposite particles in aqueous solution

    Get PDF
    This study is focused on the formation of polymer/silica nanocomposite particles prepared by the surfactant-free aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) in the presence of 19 nm glycerol-functionalized aqueous silica nanoparticles using a cationic azo initiator at 60 °C. The TFEMA polymerization kinetics are monitored using 1H NMR spectroscopy, while postmortem TEM analysis confirms that the final nanocomposite particles possess a well-defined core–shell morphology. Time-resolved small-angle X-ray scattering (SAXS) is used in conjunction with a stirrable reaction cell to monitor the evolution of the nanocomposite particle diameter, mean silica shell thickness, mean number of silica nanoparticles within the shell, silica aggregation efficiency and packing density during the TFEMA polymerization. Nucleation occurs after 10–15 min and the nascent particles quickly become swollen with TFEMA monomer, which leads to a relatively fast rate of polymerization. Additional surface area is created as these initial particles grow and anionic silica nanoparticles adsorb at the particle surface to maintain a relatively high surface coverage and hence ensure colloidal stability. At high TFEMA conversion, a contiguous silica shell is formed and essentially no further adsorption of silica nanoparticles occurs. A population balance model is introduced into the SAXS model to account for the gradual incorporation of the silica nanoparticles within the nanocomposite particles. The final PTFEMA/silica nanocomposite particles are obtained at 96% TFEMA conversion after 140 min, have a volume-average diameter of 216 ± 9 nm and contain approximately 274 silica nanoparticles within their outer shells; a silica aggregation efficiency of 75% can be achieved for such formulations

    How do charged end-groups on the steric stabilizer block influence the formation and long-term stability of Pickering nanoemulsions prepared using sterically stabilized diblock copolymer nanoparticles?

    Get PDF
    Reversible addition–fragmentation chain transfer (RAFT) solution polymerization is used to prepare well-defined poly(glycerol monomethacrylate) (PGMA) chains bearing carboxylic acid, tertiary amine, or neutral end-groups. Each of these PGMA precursors was then chain-extended in turn via RAFT aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate to form spherical nanoparticles as confirmed by transmission electron microscopy (TEM) analysis. Dynamic light scattering studies indicated an intensity-average diameter of approximately 25 nm. Aqueous electrophoresis measurements confirmed that the amine-functional nanoparticles became cationic at low pH owing to end-group protonation. In contrast, carboxylic acid-functional nanoparticles became appreciably anionic at pH 10 owing to end-group ionization. Finally, nanoparticles bearing neutral end-groups exhibited zeta potentials close to zero over a range of solution pH. High-shear homogenization of n-dodecane in the presence of such sterically stabilized nanoparticles led to the formation of oil-in-water Pickering macroemulsions with volume-average diameters of 20–30 μm. High-pressure microfluidization was then used to prepare the three corresponding Pickering nanoemulsions. Each Pickering nanoemulsion was characterized by analytical centrifugation and TEM studies of the dried nanoemulsion droplets confirmed their original nanoparticle superstructure. The nanoparticle adsorption efficiency at the oil–water interface was assessed by gel permeation chromatography (using a UV detector) for each nanoparticle type at both pH 3 and 7. Nanoparticles with charged end-groups exhibited relatively low adsorption efficiency, whereas up to 90% of the neutral nanoparticles were adsorbed onto the oil droplets. This observation was supported by small-angle X-ray scattering experiments, which indicated that the packing efficiency of neutral nanoparticles around oil droplets was higher than that of nanoparticles bearing charged end-groups. Analytical centrifugation was used to evaluate the colloidal stability of the aged Pickering nanoemulsions. Pickering nanoemulsions stabilized with nanoparticles bearing charged end-groups proved to be significantly less stable than those prepared using neutral end-groups
    corecore